MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

Related tags

Deep LearningMetaTTE
Overview

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

This is the official TensorFlow implementation of MetaTTE in the manuscript.

Core Requirements

  • tensorflow~=2.3.0
  • numpy~=1.18.4
  • spektral~=0.6.1
  • pandas~=1.0.3
  • tqdm~=4.46.0
  • opencv-python~=4.3.0.36
  • matplotlib~=3.2.1
  • Pillow~=7.1.2
  • scipy~=1.4.1

All Dependencies can be installed using the following command:

pip install -r requirements.txt

Data Preparation

We here provide the datasets we adopted in this paper with Google Drive. After downloading the zip file, please extract all the files in data directory to the data folder in this project.

Download Link: Download

Configuration

We here list a sample of our config file, and leave the comments for explanation. \ (Please DO NOT include the comments in config files)

[General]
mode = train
# Specify the absoulute path of training, validation and testing files
train_files = ./data/chengdu/train.npy,./data/porto/train.npy
val_files = ./data/chengdu/val.npy,./data/porto/val.npy
test_files = ./data/chengdu/test.npy,./data/porto/test.npy
# Specify the batch size
batch_size = 32
# Specify the number for GPU
gpu = 7
# Specify the unique label for each experiment
prefix = tte_exp_64_gru

[Model]
# Specify the inner learning rate
learning_rate = 1e-2
# Specify the inner reduce rate of learning rate
lr_reduce = 0.5
# Specify the maximum iteration
epoch = 500000
# Specify the k shot
inner_k = 10
# Specify the outer step size
outer_step_size = 0.1
# Specify the model according to the class name
model = MSMTTEGRUAttModel
# Specify the dataset according to the class name
dataset = MyDifferDatasetWithEmbedding
# Specify the dataloader according to the class name
dataloader = MyDataLoaderWithEmbedding


# mean, standard deviation for latitudes, longitudes and travel time (Chengdu is before the comma while Porto is after the comma)
[Statistics]
lat_means = 30.651168872309235,41.16060653954797
lng_means = 104.06000501543934,-8.61946359614912
lat_stds = 0.039222931811691585,0.02315827641949562
lng_stds = 0.045337940910596744,0.029208656457667292
labels_means = 1088.0075248390972,691.2889878452086
labels_stds = 1315.707363003298,347.4765869900725

Model Training

Here are commands for training the model on both Chengdu and Porto tasks.

python main.py --config=./experiments/finetuning/64/gru.conf

Eval baseline methods

Here are commands for testing the model on both Chengdu and Porto tasks.

python main.py --config=./experiments/finetuning/64/gru.conf

Citation

We currently do not provide citations.

Owner
morningstarwang
Research assistant in ICT, P.h.D candidate in BUPT, Consultant in HBY, and Advisor in Path Academics.
morningstarwang
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
Pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion"

MOSNet pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion" https://arxiv.org/abs/1904.08352 Dependency L

9 Nov 18, 2022
[NeurIPS '21] Adversarial Attacks on Graph Classification via Bayesian Optimisation (GRABNEL)

Adversarial Attacks on Graph Classification via Bayesian Optimisation @ NeurIPS 2021 This repository contains the official implementation of GRABNEL,

Xingchen Wan 12 Dec 23, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022