Official implementation of the paper: "LDNet: Unified Listener Dependent Modeling in MOS Prediction for Synthetic Speech"

Related tags

Deep LearningLDNet
Overview

LDNet

Author: Wen-Chin Huang (Nagoya University) Email: [email protected]

This is the official implementation of the paper "LDNet: Unified Listener Dependent Modeling in MOS Prediction for Synthetic Speech". This is a model that takes an input synthetic speech sample and outputs the simulated human rating.

Results

Usage

Currently we support only the VCC2018 dataset. We plan to release the BVCC dataset in the near future.

Requirements

  • PyTorch 1.9 (versions not too old should be fine.)
  • librosa
  • pandas
  • h5py
  • scipy
  • matplotlib
  • tqdm

Data preparation

# Download the VCC2018 dataset.
cd data
./download.sh vcc2018

Training

We provide configs that correspond to the following rows in the above figure:

  • (a): MBNet.yaml
  • (d): LDNet_MobileNetV3_RNN_5e-3.yaml
  • (e): LDNet_MobileNetV3_FFN_1e-3.yaml
  • (f): LDNet-MN_MobileNetV3_RNN_FFN_1e-3_lamb4.yaml
  • (g): LDNet-ML_MobileNetV3_FFN_1e-3.yaml
python train.py --config configs/<config_name> --tag <tag_name>

By default, the experimental results will be stored in exp/<tag_name>, including:

  • model-<steps>.pt: model checkpoints.
  • config.yml: the config file.
  • idtable.pkl: the dictionary that maps listener to ID.
  • training_<inference_mode>: the validation results generated along the training. This file is useful for model selection. Note that the inference_mode in the config file decides what mode is used during validation in the training.

There are some arguments that can be changed:

  • --exp_dir: The directory for storing the experimental results.
  • --data_dir: The data directory. Default is data/vcc2018.
  • seed: random seed.
  • update_freq: This is very important. See below.

Batch size and update_freq

By default, all LDNet models are trained with a batch size of 60. In my experiments, I used a single NVIDIA GeForce RTX 3090 with 24GB mdemory for training. I cannot fit the whole model in the GPU, so I accumulate gradients for update_freq forward passes and do one backward update. Before training, please check the train_batch_size in the config file, and set update_freq properly. For instance, in configs/LDNet_MobileNetV3_FFN_1e-3.yaml the train_batch_size is 20, so update_freq should be set to 3.

Inference

python inference.py --tag LDNet-ML_MobileNetV3_FFN_1e-3 --mode mean_listener

Use mode to specify which inference mode to use. Choices are: mean_net, all_listeners and mean_listener. By default, all checkpoints in the exp directory will be evaluated.

There are some arguments that can be changed:

  • ep: if you want to evaluate one model checkpoint, say, model-10000.pt, then simply pass --ep 10000.
  • start_ep: if you want to evaluate model checkpoints after a certain steps, say, 10000 steps later, then simply pass --start_ep 10000.

There are some files you can inspect after the evaluation:

  • <dataset_name>_<inference_mode>.csv: the validation and test set results.
  • <dataset_name>_<inference_mode>_<test/valid>/: figures that visualize the prediction distributions, including;
    • <ep>_distribution.png: distribution over the score range (1-5).
    • <ep>_utt_scatter_plot_utt: utterance-wise scatter plot of the ground truth and the predicted scores.
    • <ep>_sys_scatter_plot_utt: system-wise scatter plot of the ground truth and the predicted scores.

Acknowledgement

This repository inherits from this great unofficial MBNet implementation.

Citation

If you find this recipe useful, please consider citing following paper:

@article{huang2021ldnet,
  title={LDNet: Unified Listener Dependent Modeling in MOS Prediction for Synthetic Speech},
  author={Huang, Wen-Chin and Cooper, Erica and Yamagishi, Junichi and Toda, Tomoki},
  journal={arXiv preprint arXiv:2110.09103},
  year={2021}
}
Owner
Wen-Chin Huang (unilight)
Ph.D. candidate at Nagoya University, Japan. M.S. @ Nagoya University. B.S. @ National Taiwan University. RA at IIS, Academia Sinica, Taiwan.
Wen-Chin Huang (unilight)
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023