Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Overview

Obs-Causal-Q-Network

AAAI 2022 - Training a Resilient Q-Network against Observational Interference

Preprint | Slides | Colab Demo | PyTorch

Environment Setup

  • option 1 (from conda .yml under conda 10.2 and python 3.6)
conda env create -f obs-causal-q-conda.yml 
  • option 2 (from a clean python 3.6 and please follow the setup of UnityAgent 3D environment for Banana Navigator )
pip install torch torchvision torchaudio
pip install dowhy
pip install gym

1. Example of Training Causal Inference Q-Network (CIQ) on Cartpole

  • Run Causal Inference Q-Network Training (--network 1 for Treatment Inference Q-network)
python 0-cartpole-main.py --network 1
  • Causal Inference Q-Network Architecture

  • Output Logs
observation space: Box(4,)
action space: Discrete(2)
Timing Atk Ratio: 10%
Using CEQNetwork_1. Number of Params: 41872
 Interference Type: 1  Use baseline:  0 use CGM:  1
With:  10.42 % timing attack
Episode 0   Score: 48.00, Average Score: 48.00, Loss: 1.71
With:  0.0 % timing attack
Episode 20   Score: 15.00, Average Score: 18.71, Loss: 30.56
With:  3.57 % timing attack
Episode 40   Score: 28.00, Average Score: 19.83, Loss: 36.36
With:  8.5 % timing attack
Episode 60   Score: 200.00, Average Score: 43.65, Loss: 263.29
With:  9.0 % timing attack
Episode 80   Score: 200.00, Average Score: 103.53, Loss: 116.35
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 193.4
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 164.2
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 147.8
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 193.4
With:  9.5 % timing attack
Episode 100   Score: 200.00, Average Score: 163.20, Loss: 77.38
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 198.4
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 197.8
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 197.6
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 198.6
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 199.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 186.8
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0

Environment solved in 114 episodes!     Average Score: 195.55
Environment solved in 114 episodes!     Average Score: 195.55 +- 25.07
############# Basic Evaluate #############
Using CEQNetwork_1. Number of Params: 41872
Evaluate Score : 200.0
############# Noise Evaluate #############
Using CEQNetwork_1. Number of Params: 41872
Robust Score : 200.0

2. Example of Training a "Variational" Causal Inference Q-Network on Unity 3D Banana Navigator

  • Run Variational Causal Inference Q-Networks (VCIQs) Training (--network 3 for Causal Variational Inference)
python 1-banana-navigator-main.py --network 3
  • Variational Causal Inference Q-Network Architecture

  • Output Logs
'Academy' started successfully!
Unity Academy name: Academy
        Number of Brains: 1
        Number of External Brains : 1
        Lesson number : 0
        Reset Parameters :

Unity brain name: BananaBrain
        Number of Visual Observations (per agent): 0
        Vector Observation space type: continuous
        Vector Observation space size (per agent): 37
        Number of stacked Vector Observation: 1
        Vector Action space type: discrete
        Vector Action space size (per agent): 4
        Vector Action descriptions: , , , 
Timing Atk Ratio: 10%
Using CEVAE_QNetwork.
Unity Worker id: 10  T: 1  Use baseline:  0  CEVAE:  1
With:  9.67 % timing attack
Episode 0   Score: 0.00, Average Score: 0.00
With:  11.0 % timing attack
Episode 5   Score: 1.00, Average Score: 0.17
With:  11.33 % timing attack
Episode 10   Score: 0.00, Average Score: 0.36
With:  10.33 % timing attack
Episode 15   Score: 0.00, Average Score: 0.56
...
Episode 205   Score: 10.00, Average Score: 9.25
With:  9.33 % timing attack
Episode 210   Score: 9.00, Average Score: 9.70
With:  9.0 % timing attack
Episode 215   Score: 10.00, Average Score: 11.10
With:  8.33 % timing attack
Episode 220   Score: 14.00, Average Score: 10.85
With:  12.33 % timing attack
Episode 225   Score: 19.00, Average Score: 11.70
With:  11.0 % timing attack
Episode 230   Score: 18.00, Average Score: 12.10
With:  7.67 % timing attack
Episode 235   Score: 21.00, Average Score: 11.60
With:  9.67 % timing attack
Episode 240   Score: 16.00, Average Score: 12.05

Environment solved in 242 episodes!     Average Score: 12.50
Environment solved in 242 episodes!     Average Score: 12.50 +- 4.87
############# Basic Evaluate #############
Using CEVAE_QNetwork.
Evaluate Score : 12.6
############# Noise Evaluate #############
Using CEVAE_QNetwork.
Robust Score : 12.5

Reference

This fun work was initialzed when Danny and I first read the Causal Variational Model between 2018 to 2019 with the helps from Dr. Yi Ouyang and Dr. Pin-Yu Chen.

Please consider to reference the paper if you find this work helpful or relative to your research.

@article{yang2021causal,
  title={Causal Inference Q-Network: Toward Resilient Reinforcement Learning},
  author={Yang, Chao-Han Huck and Hung, I and Danny, Te and Ouyang, Yi and Chen, Pin-Yu},
  journal={arXiv preprint arXiv:2102.09677},
  year={2021}
}
Owner
Speech, Privacy, Robust RL, and Causal Inference.
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021