A python package for generating, analyzing and visualizing building shadows

Overview

pybdshadow

1649074615552.png

Documentation Status Downloads codecov Tests Binder

Introduction

pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic data. pybdshadow support generate building shadows from both sun light and point light. pybdshadow provides an efficient and easy-to-use method to generate a new source of geospatial data with great application potential in urban study.

The latest stable release of the software can be installed via pip and full documentation can be found here.

Functionality

Currently, pybdshadow mainly provides the following methods:

  • Generating building shadow from sun light: With given location and time, the function in pybdshadow uses the properties of sun position obtained from suncalc-py and the building height to generate shadow geometry data.
  • Generating building shadow from point light: pybdshadow can generate the building shadow with given location and height of the point light, which can be potentially useful for visual area analysis in urban environment.
  • Analysis: pybdshadow integrated the analysing method based on the properties of sun movement to track the changing position of shadows within a fixed time interval. Based on the grid processing framework provided by TransBigData, pybdshadow is capable of calculating sunshine time on the ground and on the roof.
  • Visualization: Built-in visualization capabilities leverage the visualization package keplergl to interactively visualize building and shadow data in Jupyter notebooks with simple code.

The target audience of pybdshadow includes data science researchers and data engineers in the field of BIM, GIS, energy, environment, and urban computing.

Installation

It is recommended to use Python 3.7, 3.8, 3.9

Using pypi PyPI version

pybdshadow can be installed by using pip install. Before installing pybdshadow, make sure that you have installed the available geopandas package. If you already have geopandas installed, run the following code directly from the command prompt to install pybdshadow:

pip install pybdshadow

Usage

Shadow generated by Sun light

Detail usage can be found in this example. pybdshadow is capable of generating shadows from building geographic data. The buildings are usually store in the data as the form of Polygon object with height information (usually Shapefile or GeoJSON file).

import pandas as pd
import geopandas as gpd
#Read building GeoJSON data
buildings = gpd.read_file(r'data/bd_demo_2.json')

Given a building GeoDataFrame and UTC datetime, pybdshadow can calculate the building shadow based on the sun position obtained by suncalc-py.

import pybdshadow
#Given UTC datetime
date = pd.to_datetime('2022-01-01 12:45:33.959797119')\
    .tz_localize('Asia/Shanghai')\
    .tz_convert('UTC')
#Calculate building shadow for sun light
shadows = pybdshadow.bdshadow_sunlight(buildings,date)

Visualize buildings and shadows using matplotlib.

import matplotlib.pyplot as plt
fig = plt.figure(1, (12, 12))
ax = plt.subplot(111)
# plot buildings
buildings.plot(ax=ax)
# plot shadows
shadows['type'] += ' shadow'
shadows.plot(ax=ax, alpha=0.7,
             column='type',
             categorical=True,
             cmap='Set1_r',
             legend=True)
plt.show()

1651741110878.png

pybdshadow also provide visualization method supported by keplergl.

# visualize buildings and shadows
pybdshadow.show_bdshadow(buildings = buildings,shadows = shadows)

1649161376291.png

Shadow generated by Point light

pybdshadow can also calculate the building shadow generated by point light. Given coordinates and height of the point light:

#Calculate building shadow for point light
shadows = pybdshadow.bdshadow_pointlight(buildings,139.713319,35.552040,200)
#Visualize buildings and shadows
pybdshadow.show_bdshadow(buildings = buildings,shadows = shadows)

1649405838683.png

Shadow coverage analysis

pybdshadow provides the functionality to analysis sunshine time on the roof and on the ground.

Result of shadow coverage on the roof:

1651645524782.png1651975815798.png

Result of sunshine time on the ground:

1651645530892.png1651975824187.png

Dependency

pybdshadow depends on the following packages

Citation information status

Citation information can be found at CITATION.cff.

Contributing to pybdshadow GitHub contributors GitHub commit activity

All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome. A detailed overview on how to contribute can be found in the contributing guide on GitHub.

You might also like...
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Code for the paper
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

Analyzing basic network responses to novel classes
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

πŸ˜‡A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Official repository of the paper
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Comments
  • Could you explain more on the data preparation pipeline?(How to get geojson file from OSM?) much appreciated!

    Could you explain more on the data preparation pipeline?(How to get geojson file from OSM?) much appreciated!

    Is your feature request related to a problem? Please describe. A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]

    Describe the solution you'd like A clear and concise description of what you want to happen.

    Describe alternatives you've considered A clear and concise description of any alternative solutions or features you've considered.

    Additional context Add any other context or screenshots about the feature request here.

    opened by WanliQianKolmostar 4
  • Shadows also before sunrise and after sunset

    Shadows also before sunrise and after sunset

    Hi, thanks for this wonderful package, I'm really enjoying it!

    I've noticed that with pybdshadow.bdshadow_sunlight shadow results are also provided before sunrise and after sunset for the local time, it seems to me there should be an error thrown in this case, since the results are not meaningful (or simply a zero area shadow provided).

    I imagine this type of check is already implemented for the calculations of light/shadow daily hours on a surface.

    opened by gcaria 2
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    Beep boop. Your images are optimized!

    Your image file size has been reduced by 20% πŸŽ‰

    Details

    | File | Before | After | Percent reduction | |:--|:--|:--|:--| | /image/README/1649161376291_1.png | 373.42kb | 249.67kb | 33.14% | | /docs/source/_static/visualize.png | 142.65kb | 95.60kb | 32.98% | | /image/README/1649074615552.png | 25.86kb | 18.00kb | 30.41% | | /docs/source/_static/logo-wordmark-dark.png | 25.86kb | 18.00kb | 30.41% | | /docs/source/_static/logo-wordmark-light.png | 22.20kb | 16.06kb | 27.67% | | /image/README/1649405838683_1.png | 395.68kb | 297.10kb | 24.91% | | /docs/source/example/output_6_1.png | 283.05kb | 230.73kb | 18.48% | | /docs/source/example/output_31_0.png | 56.82kb | 46.96kb | 17.35% | | /image/README/1651975824187.png | 57.54kb | 47.80kb | 16.93% | | /docs/source/example/output_29_0.png | 57.54kb | 47.80kb | 16.93% | | /docs/source/example/output_14_0.png | 413.83kb | 349.48kb | 15.55% | | /image/README/1651741110878.png | 414.83kb | 350.63kb | 15.47% | | /docs/source/example/output_24_1.png | 16.54kb | 14.38kb | 13.09% | | /image/README/1651975815798.png | 37.59kb | 34.22kb | 8.98% | | /docs/source/example/output_27_0.png | 37.59kb | 34.22kb | 8.98% | | /image/README/1651645530892.png | 47.96kb | 46.13kb | 3.81% | | /image/README/1651506285290.png | 44.85kb | 43.24kb | 3.59% | | /image/README/1651645524782.png | 39.38kb | 38.19kb | 3.01% | | /image/README/1651490416315.png | 42.67kb | 41.57kb | 2.58% | | /image/README/1651490411329.png | 39.70kb | 38.88kb | 2.06% | | | | | | | Total : | 2,575.54kb | 2,058.63kb | 20.07% |


    πŸ“ docs | :octocat: repo | πŸ™‹πŸΎ issues | πŸͺ marketplace

    ~Imgbot - Part of Optimole family

    opened by imgbot[bot] 1
  • Shadow on vertical walls

    Shadow on vertical walls

    Hi, As far as I understood from the documentation, pybdshadow is currently able to calculate shadows on the ground and on the roofs of buildings. I was just wondering, is it possible to calculate shadows also on vertical walls of buildings? For my use case, I would not need a complete shadow calculation, I would just need to know if a specific wall surface is shadowed or not (a binary output). To simplify, it would be enough to know if a single point of the wall surface (e.g. the center) is shadowed.

    opened by amaccarini 1
Releases(0.3.3)
Owner
Qing Yu
Python, JavaScript, Spatio-temporal big data, Data visualization
Qing Yu
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub β€” it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1οΌ‰Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised d

Hang 94 Dec 25, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022