DeepCAD: A Deep Generative Network for Computer-Aided Design Models

Overview

DeepCAD

This repository provides source code for our paper:

DeepCAD: A Deep Generative Network for Computer-Aided Design Models

Rundi Wu, Chang Xiao, Changxi Zheng

ICCV 2021 (camera ready version coming soon)

We also release the Onshape CAD data parsing scripts here: onshape-cad-parser.

Prerequisites

  • Linux
  • NVIDIA GPU + CUDA CuDNN
  • Python 3.7, PyTorch 1.5+

Dependencies

Install python package dependencies through pip:

$ pip install -r requirements.txt

Install pythonocc (OpenCASCADE) by conda:

$ conda install -c conda-forge pythonocc-core=7.5.1

Data

Download data from here (backup) and extract them under data folder.

  • cad_json contains the original json files that we parsed from Onshape and each file describes a CAD construction sequence.
  • cad_vec contains our vectorized representation for CAD sequences, which serves for fast data loading. They can also be obtained using dataset/json2vec.py. TBA.
  • Some evaluation metrics that we use requires ground truth point clouds. Run:
    $ cd dataset
    $ python json2pc.py --only_test

The data we used are parsed from Onshape public documents with links from ABC dataset. We also release our parsing scripts here for anyone who are interested in parsing their own data.

Training

See all hyper-parameters and configurations under config folder. To train the autoencoder:

$ python train.py --exp_name newDeepCAD -g 0

For random generation, further train a latent GAN:

# encode all data to latent space
$ python test.py --exp_name newDeepCAD --mode enc --ckpt 1000 -g 0

# train latent GAN (wgan-gp)
$ python lgan.py --exp_name newDeepCAD --ae_ckpt 1000 -g 0

The trained models and experment logs will be saved in proj_log/newDeepCAD/ by default.

Testing and Evaluation

Autoencoding

After training the autoencoder, run the model to reconstruct all test data:

$ python test.py --exp_name newDeepCAD --mode rec --ckpt 1000 -g 0

The results will be saved inproj_log/newDeepCAD/results/test_1000 by default in the format of h5 (CAD sequence saved in vectorized representation).

To evaluate the results:

$ cd evaluation
# for command accuray and parameter accuracy
$ python evaluate_ae_acc.py --src ../proj_log/newDeepCAD/results/test_1000
# for chamfer distance and invalid ratio
$ python evaluate_ae_cd.py --src ../proj_log/newDeepCAD/results/test_1000 --parallel

Random Generation

After training the latent GAN, run latent GAN and the autoencoder to do random generation:

# run latent GAN to generate fake latent vectors
$ python lgan.py --exp_name newDeepCAD --ae_ckpt 1000 --ckpt 200000 --test --n_samples 9000 -g 0

# run the autoencoder to decode into final CAD sequences
$ python test.py --exp_name newDeepCAD --mode dec --ckpt 1000 --z_path proj_log/newDeepCAD/lgan_1000/results/fake_z_ckpt200000_num9000.h5 -g 0

The results will be saved inproj_log/newDeepCAD/lgan_1000/results by default.

To evaluate the results by COV, MMD and JSD:

$ cd evaluation
$ sh run_eval_gen.sh ../proj_log/newDeepCAD/lgan_1000/results/fake_z_ckpt200000_num9000_dec 1000 0

The script run_eval_gen.sh combines collect_gen_pc.py and evaluate_gen_torch.py. You can also run these two files individually with specified arguments.

Pre-trained models

Download pretrained model from here (backup) and extract it under proj_log. All testing commands shall be able to excecuted directly, by specifying --exp_name=pretrained when needed.

Visualization and Export

We provide scripts to visualize CAD models and export the results to .step files, which can be loaded by almost all modern CAD softwares.

$ cd utils
$ python show.py --src {source folder} # visualize with opencascade
$ python export2step.py --src {source folder} # export to step format

Script to create CAD modeling sequence in Onshape according to generated outputs: TBA.

Acknowledgement

We would like to thank and acknowledge referenced codes from DeepSVG, latent 3d points and PointFlow.

Cite

Please cite our work if you find it useful:

@InProceedings{wu2021deepcad,
author = {Wu, Rundi and Xiao, Chang and Zheng, Changxi},
title = {DeepCAD: A Deep Generative Network for Computer-Aided Design Models},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021}
}
Owner
Rundi Wu
PhD student at Columbia University
Rundi Wu
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 734 Jan 03, 2023
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order

4 Jan 04, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022