A data-driven maritime port simulator

Related tags

Deep Learningpyseidon
Overview

PySeidon - A Data-Driven Maritime Port Simulator 🌊

Image of the simulation software

Extendable and modular software for maritime port simulation.

This software uses entity-component system approach making it highly customizable for various end goals and easily built upon.

Overview

PySeidon was primarily designed for port scenario testing, but can be used for a variety of other tasks. Software can be adapted to simulate any maritime port provided that the required data is available. The simulator can be tested with different factors, such as:

  • New/different anchorage location
  • Different number of tugboat/pilots available
  • Different priority order depending on ship class/size
  • Etc...

PySeidon's output can then give useful insights whether the given change improves certain Key Performance Indicators (check this repository for scripts to analyse simulation results).

PySeidon can be used to create new data for various downstream tasks (e.g. anomaly detection), approximate impact on Key Performance Indicators of some decision, novelty introduced in a port. The supplemental visualization software can be used to analyse general (or created by simulation) AIS data over time or analyse simulation states (for debugging).

Installation and Demo

The framework is bundled with an example model to get you started. To run it first install the dependencies by running pip install -r requirements.txt. Pip might complain about libgeos not being installed on your system. On Ubuntu you can install it by running sudo apt-get install libgeos-dev.

Once the required libraries are installed run the example model with the following command (it may take a bit for the first vessel to spawn)

python main.py          \
    --out sim-output    \
    --step 10           \
    --verbose y         \
    --graphics y        \
    --cache y           \
    --seed 567

Features

  • Simulation of the following agents and infrastructure elements
    • Agents: vessel, tugboats, pilots
    • Infrastructure components: berths, anchorages, tugboat rendezvous and storage locations, pilot rendezvous and storage locations
    • Introduction of anomalies such as randomized berth inspections, tugboat malfunctions, anomalous vessel velocity. These can be used to create datasets that are currently not available
  • Visualization of the simulation: infrastructure components and agents, including an overview of vessel and berth information at any moment in time
  • Simulation of anomalies: random berth inspection, tugboat malfunctions, unusual vessel velocities
  • Clean way of conducting experiments of the simulation (multiple runs, no graphics, aggregating output data of the simulation)
  • The simulation engine relies on the input data, minimal actual code modification (model and main.py) is required to adapt to different maritime ports if no additional features are to be implemented

Documentation

For detailed instructions how to install and use PySeidon, see the Documentation.

Future work

  • Various external factors such as weather, tide, etc.
  • Implement proper nautical rules
  • Loading simulation from a saved state
  • GUI to enable non-experts be able to use the software
  • Boatmen agent
  • Better vessel acceleration model, PID controller
  • Automatic data analysis at the end of simulation
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 03, 2022
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
Haze Removal can remove slight to extreme cases of haze affecting an image

Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be

Grace Ugochi Nneji 3 Feb 15, 2022
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
EXplainable Artificial Intelligence (XAI)

EXplainable Artificial Intelligence (XAI) This repository includes the codes for different projects on eXplainable Artificial Intelligence (XAI) by th

4 Nov 28, 2022