Compare GAN code.

Overview

Compare GAN

This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks:

  • losses (such non-saturating GAN, least-squares GAN, and WGAN),
  • penalties (such as the gradient penalty),
  • normalization techniques (such as spectral normalization, batch normalization, and layer normalization),
  • neural architectures (BigGAN, ResNet, DCGAN), and
  • evaluation metrics (FID score, Inception Score, precision-recall, and KID score).

The code is configurable via Gin and runs on GPU/TPU/CPUs. Several research papers make use of this repository, including:

  1. Are GANs Created Equal? A Large-Scale Study [Code]
    Mario Lucic*, Karol Kurach*, Marcin Michalski, Sylvain Gelly, Olivier Bousquet [NeurIPS 2018]

  2. The GAN Landscape: Losses, Architectures, Regularization, and Normalization [Code] [Colab]
    Karol Kurach*, Mario Lucic*, Xiaohua Zhai, Marcin Michalski, Sylvain Gelly [ICML 2019]

  3. Assessing Generative Models via Precision and Recall [Code]
    Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, Sylvain Gelly [NeurIPS 2018]

  4. GILBO: One Metric to Measure Them All [Code]
    Alexander A. Alemi, Ian Fischer [NeurIPS 2018]

  5. A Case for Object Compositionality in Deep Generative Models of Images [Code]
    Sjoerd van Steenkiste, Karol Kurach, Sylvain Gelly [2018]

  6. On Self Modulation for Generative Adversarial Networks [Code]
    Ting Chen, Mario Lucic, Neil Houlsby, Sylvain Gelly [ICLR 2019]

  7. Self-Supervised GANs via Auxiliary Rotation Loss [Code] [Colab]
    Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic, Neil Houlsby [CVPR 2019]

  8. High-Fidelity Image Generation With Fewer Labels [Code] [Blog Post] [Colab]
    Mario Lucic*, Michael Tschannen*, Marvin Ritter*, Xiaohua Zhai, Olivier Bachem, Sylvain Gelly [ICML 2019]

Installation

You can easily install the library and all necessary dependencies by running: pip install -e . from the compare_gan/ folder.

Running experiments

Simply run the main.py passing a --model_dir (this is where checkpoints are stored) and a --gin_config (defines which model is trained on which data set and other training options). We provide several example configurations in the example_configs/ folder:

  • dcgan_celeba64: DCGAN architecture with non-saturating loss on CelebA 64x64px
  • resnet_cifar10: ResNet architecture with non-saturating loss and spectral normalization on CIFAR-10
  • resnet_lsun-bedroom128: ResNet architecture with WGAN loss and gradient penalty on LSUN-bedrooms 128x128px
  • sndcgan_celebahq128: SN-DCGAN architecture with non-saturating loss and spectral normalization on CelebA-HQ 128x128px
  • biggan_imagenet128: BigGAN architecture with hinge loss and spectral normalization on ImageNet 128x128px

Training and evaluation

To see all available options please run python main.py --help. Main options:

  • To train the model use --schedule=train (default). Training is resumed from the last saved checkpoint.
  • To evaluate all checkpoints use --schedule=continuous_eval --eval_every_steps=0. To evaluate only checkpoints where the step size is divisible by 5000, use --schedule=continuous_eval --eval_every_steps=5000. By default, 3 averaging runs are used to estimate the Inception Score and the FID score. Keep in mind that when running locally on a single GPU it may not be possible to run training and evaluation simultaneously due to memory constraints.
  • To train and evaluate the model use --schedule=eval_after_train --eval_every_steps=0.

Training on Cloud TPUs

We recommend using the ctpu tool to create a Cloud TPU and corresponding Compute Engine VM. We use v3-128 Cloud TPU v3 Pod for training models on ImageNet in 128x128 resolutions. You can use smaller slices if you reduce the batch size (options.batch_size in the Gin config) or model parameters. Keep in mind that the model quality might change. Before training make sure that the environment variable TPU_NAME is set. Running evaluation on TPUs is currently not supported. Use a VM with a single GPU instead.

Datasets

Compare GAN uses TensorFlow Datasets and it will automatically download and prepare the data. For ImageNet you will need to download the archive yourself. For CelebAHq you need to download and prepare the images on your own. If you are using TPUs make sure to point the training script to your Google Storage Bucket (--tfds_data_dir).

Owner
Google
Google ❤️ Open Source
Google
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Demonstrational Session git repo for H SAF User Workshop (28/1)

5th H SAF User Workshop The 5th H SAF User Workshop supported by EUMeTrain will be held in online in January 24-28 2022. This repository contains inst

H SAF 4 Aug 04, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval.

DARP-SBIR Intro This repository contains the source code implementation for ICDM submission paper Deep Reinforced Attention Regression for Partial Ske

2 Jan 09, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin

136 Jan 08, 2023