Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Overview

Pixel-Level Cycle Association

This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation.

Requirements

pip install -r ./requirements.txt

We test our codes with two NVIDIA Tesla V100 (32G) GPU cards.

Dataset

See experiments/data/

Pre-trained Model

Following general practice, our training starts from ResNet-101 backbone pretrained on ImageNet. Please download the weight file and put it under the model directory.

Training

For GTAV to CityScapes:

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --use_env ./tools/train.py --cfg ./experiment/config/g2c_train.yaml --exp_name g2c 

For SYNTHIA to CityScapes:

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --use_env ./tools/train.py --cfg ./experiment/config/s2c_train.yaml --exp_name s2c 

You can also use the shell scripts provided under directory experiment/scripts/train.sh to train your model.

Test

For GTAV to CityScapes:

CUDA_VISIBLE_DEVICES=0,1 python ./tools/test.py --cfg ./experiment/config/g2c_test.yaml --weights ${PATH_TRAINED_WEIGHTS} --exp_name g2c_test

For SYNTHIA to CityScapes:

CUDA_VISIBLE_DEVICES=0,1 python ./tools/test.py --cfg ./experiment/config/s2c_test.yaml --weights ${PATH_TRAINED_WEIGHTS} --exp_name s2c_test

You can also use the shell scripts provided under directory experiment/scripts/test_normal.sh to evaluate your model.

Our trained model for both tasks can be downloaded from PLCA-trained-model with test mIoU 47.8% and 46.9% (16 classes) respectively.

Citing

Please cite our paper if you use our code in your research:

@inproceedings{kang2020pixel,
  title={Pixel-Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation},
  author={Kang, Guoliang and Wei, Yunchao and Yang, Yi and Zhuang, Yueting and Hauptmann, Alexander G},
  booktitle={NeurIPS},
  year={2020}
}

Contact

If you have any questions, please contact me via [email protected].

Thanks to third party

torchvision

LovaszSoftmax

This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

697 Jan 06, 2023
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Iconary This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the

AI2 6 May 24, 2022
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation".

Prompt-Based Multi-Modal Image Segmentation This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation". The sys

Timo Lüddecke 305 Dec 30, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022