A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Overview

Hypercomplex

A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex numbers.

The complex numbers may be viewed as an extension of the everyday real numbers. A complex number has two real-number coefficients, one multiplied by 1, the other multiplied by i.

In a similar way, a quaternion, which has 4 components, can be constructed by combining two complex numbers. Likewise, two quaternions can construct an octonion (8 components), and two octonions can construct a sedenion (16 components).

The method for this construction is known as the Cayley-Dickson construction and the resulting classes of numbers are types of hypercomplex numbers. There is no limit to the number of times you can repeat the Cayley-Dickson construction to create new types of hypercomplex numbers, doubling the number of components each time.

This Python 3 package allows the creation of number classes at any repetition level of Cayley-Dickson constructions, and has built-ins for the lower, named levels such as quaternion, octonion, and sedenion.

Hypercomplex numbers containment diagram

Installation

pip install hypercomplex

View on PyPI - View on GitHub

This package was built in Python 3.9.6 and has been tested to be compatible with python 3.6 through 3.10.

Basic Usage

from hypercomplex import Complex, Quaternion, Octonion, Voudon, cayley_dickson_construction

c = Complex(0, 7)
print(c)        # -> (0 7)
print(c == 7j)  # -> True

q = Quaternion(1.1, 2.2, 3.3, 4.4)
print(2 * q)  # -> (2.2 4.4 6.6 8.8)

print(Quaternion.e_matrix())  # -> e0  e1  e2  e3
                              #    e1 -e0  e3 -e2
                              #    e2 -e3 -e0  e1
                              #    e3  e2 -e1 -e0

o = Octonion(0, 0, 0, 0, 8, 8, 9, 9)
print(o + q)  # -> (1.1 2.2 3.3 4.4 8 8 9 9)

v = Voudon()
print(v == 0)  # -> True
print(len(v))  # -> 256

BeyondVoudon = cayley_dickson_construction(Voudon)
print(len(BeyondVoudon()))  # -> 512

For more snippets see the Thorough Usage Examples section below.

Package Contents

Three functions form the core of the package:

  • reals(base) - Given a base type (float by default), generates a class that represents numbers with 1 hypercomplex dimension, i.e. real numbers. This class can then be extended into complex numbers and beyond with cayley_dickson_construction.

    Any usual math operations on instances of the class returned by reals behave as instances of base would but their type remains the reals class. By default they are printed with the g format-spec and surrounded by parentheses, e.g. (1), to remain consistent with the format of higher dimension hypercomplex numbers.

    Python's decimal.Decimal might be another likely choice for base.

    # reals example:
    from hypercomplex import reals
    from decimal import Decimal
    
    D = reals(Decimal)
    print(D(10) / 4)   # -> (2.5)
    print(D(3) * D(9)) # -> (27)
  • cayley_dickson_construction(basis) (alias cd_construction) generates a new class of hypercomplex numbers with twice the dimension of the given basis, which must be another hypercomplex number class or class returned from reals. The new class of numbers is defined recursively on the basis according the Cayley-Dickson construction. Normal math operations may be done upon its instances and with instances of other numeric types.

    # cayley_dickson_construction example:
    from hypercomplex import *
    RealNum = reals()
    ComplexNum = cayley_dickson_construction(RealNum)
    QuaternionNum = cayley_dickson_construction(ComplexNum)
    
    q = QuaternionNum(1, 2, 3, 4)
    print(q)         # -> (1 2 3 4)
    print(1 / q)     # -> (0.0333333 -0.0666667 -0.1 -0.133333)
    print(q + 1+2j)  # -> (2 4 3 4)
  • cayley_dickson_algebra(level, base) (alias cd_algebra) is a helper function that repeatedly applies cayley_dickson_construction to the given base type (float by default) level number of times. That is, cayley_dickson_algebra returns the class for the Cayley-Dickson algebra of hypercomplex numbers with 2**level dimensions.

    # cayley_dickson_algebra example:
    from hypercomplex import *
    OctonionNum = cayley_dickson_algebra(3)
    
    o = OctonionNum(8, 7, 6, 5, 4, 3, 2, 1)
    print(o)              # -> (8 7 6 5 4 3 2 1)
    print(2 * o)          # -> (16 14 12 10 8 6 4 2)
    print(o.conjugate())  # -> (8 -7 -6 -5 -4 -3 -2 -1)

For convenience, nine internal number types are already defined, built off of each other:

Name Aliases Description
Real R, CD1, CD[0] Real numbers with 1 hypercomplex dimension based on float.
Complex C, CD2, CD[1] Complex numbers with 2 hypercomplex dimensions based on Real.
Quaternion Q, CD4, CD[2] Quaternion numbers with 4 hypercomplex dimensions based on Complex.
Octonion O, CD8, CD[3] Octonion numbers with 8 hypercomplex dimensions based on Quaternion.
Sedenion S, CD16, CD[4] Sedenion numbers with 16 hypercomplex dimensions based on Octonion.
Pathion P, CD32, CD[5] Pathion numbers with 32 hypercomplex dimensions based on Sedenion.
Chingon X, CD64, CD[6] Chingon numbers with 64 hypercomplex dimensions based on Pathion.
Routon U, CD128, CD[7] Routon numbers with 128 hypercomplex dimensions based on Chingon.
Voudon V, CD256, CD[8] Voudon numbers with 256 hypercomplex dimensions based on Routon.
# built-in types example:
from hypercomplex import *
print(Real(4))               # -> (4)
print(C(3-7j))               # -> (3 -7)
print(CD4(.1, -2.2, 3.3e3))  # -> (0.1 -2.2 3300 0)
print(CD[3](1, 0, 2, 0, 3))  # -> (1 0 2 0 3 0 0 0)

The names and letter-abbreviations were taken from this image (mirror) found in Micheal Carter's paper Visualization of the Cayley-Dickson Hypercomplex Numbers Up to the Chingons (64D), but they also may be known according to their Latin naming conventions.

Thorough Usage Examples

This list follows examples.py exactly and documents nearly all the things you can do with the hypercomplex numbers created by this package.

Every example assumes the appropriate imports are already done, e.g. from hypercomplex import *.

  1. Initialization can be done in various ways, including using Python's built in complex numbers. Unspecified coefficients become 0.

    print(R(-1.5))                        # -> (-1.5)
    print(C(2, 3))                        # -> (2 3)
    print(C(2 + 3j))                      # -> (2 3)
    print(Q(4, 5, 6, 7))                  # -> (4 5 6 7)
    print(Q(4 + 5j, C(6, 7), pair=True))  # -> (4 5 6 7)
    print(P())                            # -> (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
  2. Numbers can be added and subtracted. The result will be the type with more dimensions.

    print(Q(0, 1, 2, 2) + C(9, -1))                   # -> (9 0 2 2)
    print(100.1 - O(0, 0, 0, 0, 1.1, 2.2, 3.3, 4.4))  # -> (100.1 0 0 0 -1.1 -2.2 -3.3 -4.4)
  3. Numbers can be multiplied. The result will be the type with more dimensions.

    print(10 * S(1, 2, 3))                    # -> (10 20 30 0 0 0 0 0 0 0 0 0 0 0 0 0)
    print(Q(1.5, 2.0) * O(0, -1))             # -> (2 -1.5 0 0 0 0 0 0)
    
    # notice quaternions are non-commutative
    print(Q(1, 2, 3, 4) * Q(1, 0, 0, 1))      # -> (-3 5 1 5)
    print(Q(1, 0, 0, 1) * Q(1, 2, 3, 4))      # -> (-3 -1 5 5)
  4. Numbers can be divided and inverse gives the multiplicative inverse.

    print(100 / C(0, 2))                      # -> (0 -50)
    print(C(2, 2) / Q(1, 2, 3, 4))            # -> (0.2 -0.0666667 0.0666667 -0.466667)
    print(C(2, 2) * Q(1, 2, 3, 4).inverse())  # -> (0.2 -0.0666667 0.0666667 -0.466667)
    print(R(2).inverse(), 1 / R(2))           # -> (0.5) (0.5)
  5. Numbers can be raised to integer powers, a shortcut for repeated multiplication or division.

    q = Q(0, 3, 4, 0)
    print(q**5)               # -> (0 1875 2500 0)
    print(q * q * q * q * q)  # -> (0 1875 2500 0)
    print(q**-1)              # -> (0 -0.12 -0.16 0)
    print(1 / q)              # -> (0 -0.12 -0.16 0)
    print(q**0)               # -> (1 0 0 0)
  6. conjugate gives the conjugate of the number.

    print(R(9).conjugate())           # -> (9)
    print(C(9, 8).conjugate())        # -> (9 -8)
    print(Q(9, 8, 7, 6).conjugate())  # -> (9 -8 -7 -6)
  7. norm gives the absolute value as the base type (float by default). There is also norm_squared.

    print(O(3, 4).norm(), type(O(3, 4).norm()))  # -> 5.0 <class 'float'>
    print(abs(O(3, 4)))                          # -> 5.0
    print(O(3, 4).norm_squared())                # -> 25.0
  8. Numbers are considered equal if their coefficients all match. Non-existent coefficients are 0.

    print(R(999) == V(999))         # -> True
    print(C(1, 2) == Q(1, 2))       # -> True
    print(C(1, 2) == Q(1, 2, 0.1))  # -> False
  9. coefficients gives a tuple of the components of the number in their base type (float by default). The properties real and imag are shortcuts for the first two components. Indexing can also be used (but is inefficient).

    print(R(100).coefficients())   # -> (100.0,)
    q = Q(2, 3, 4, 5)
    print(q.coefficients())        # -> (2.0, 3.0, 4.0, 5.0)
    print(q.real, q.imag)          # -> 2.0 3.0
    print(q[0], q[1], q[2], q[3])  # -> 2.0 3.0 4.0 5.0
  10. e(index) of a number class gives the unit hypercomplex number where the index coefficient is 1 and all others are 0.

    print(C.e(0))  # -> (1 0)
    print(C.e(1))  # -> (0 1)
    print(O.e(3))  # -> (0 0 0 1 0 0 0 0)
  11. e_matrix of a number class gives the multiplication table of e(i)*e(j). Set string=False to get a 2D list instead of a string. Set raw=True to get the raw hypercomplex numbers.

    print(O.e_matrix())                        # -> e1  e2  e3  e4  e5  e6  e7
                                               #   -e0  e3 -e2  e5 -e4 -e7  e6
                                               #   -e3 -e0  e1  e6  e7 -e4 -e5
                                               #    e2 -e1 -e0  e7 -e6  e5 -e4
                                               #   -e5 -e6 -e7 -e0  e1  e2  e3
                                               #    e4 -e7  e6 -e1 -e0 -e3  e2
                                               #    e7  e4 -e5 -e2  e3 -e0 -e1
                                               #   -e6  e5  e4 -e3 -e2  e1 -e0
                                               #
    print(C.e_matrix(string=False, raw=True))  # -> [[(1 0), (0 1)], [(0 1), (-1 0)]]
  12. A number is considered truthy if it has has non-zero coefficients. Conversion to int, float and complex are only valid when the coefficients beyond the dimension of those types are all 0.

    print(bool(Q()))                    # -> False
    print(bool(Q(0, 0, 0.01, 0)))       # -> True
    
    print(complex(Q(5, 5)))             # -> (5+5j)
    print(int(V(9.9)))                  # -> 9
    # print(float(C(1, 2))) <- invalid
  13. Any usual format spec for the base type can be given in an f-string.

    o = O(0.001, 1, -2, 3.3333, 4e5)
    print(f"{o:.2f}")                 # -> (0.00 1.00 -2.00 3.33 400000.00 0.00 0.00 0.00)
    print(f"{R(23.9):04.0f}")         # -> (0024)
  14. The len of a number is its hypercomplex dimension, i.e. the number of components or coefficients it has.

    print(len(R()))      # -> 1
    print(len(C(7, 7)))  # -> 2
    print(len(U()))      # -> 128
  15. Using in behaves the same as if the number were a tuple of its coefficients.

    print(3 in Q(1, 2, 3, 4))  # -> True
    print(5 in Q(1, 2, 3, 4))  # -> False
  16. copy can be used to duplicate a number (but should generally never be needed as all operations create a new number).

    x = O(9, 8, 7)
    y = x.copy()
    print(x == y)   # -> True
    print(x is y)   # -> False
  17. base on a number class will return the base type the entire numbers are built upon.

    print(R.base())                      # -> <class 'float'>
    print(V.base())                      # -> <class 'float'>
    A = cayley_dickson_algebra(20, int)
    print(A.base())                      # -> <class 'int'>
  18. Hypercomplex numbers are weird, so be careful! Here two non-zero sedenions multiply to give zero because sedenions and beyond have zero devisors.

    s1 = S.e(5) + S.e(10)
    s2 = S.e(6) + S.e(9)
    print(s1)                                    # -> (0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0)
    print(s2)                                    # -> (0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0)
    print(s1 * s2)                               # -> (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
    print((1 / s1) * (1 / s2))                   # -> (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
    # print(1/(s1 * s2)) <- zero division error

About

I wrote this package for the novelty of it and as a math and programming exercise. The operations it can perform on hypercomplex numbers are not particularly efficient due to the recursive nature of the Cayley-Dickson construction.

I am not a mathematician, only a math hobbyist, and apologize if there are issues with the implementations or descriptions I have provided.

Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
๐ŸŒˆ PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w

VECTR at UCLA 369 Dec 30, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
ใ€ŒPyTorch Implementation of AnimeGANv2ใ€ใ‚’็”จใ„ใฆใ€็”Ÿๆˆใ—ใŸ้ก”็”ปๅƒใ‚’ๅ…ƒใฎ็”ปๅƒใซไธŠๆ›ธใใ™ใ‚‹ใƒ‡ใƒข

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2ใ‚’็”จใ„ใฆใ€็”Ÿๆˆใ—ใŸ้ก”็”ปๅƒใ‚’ๅ…ƒใฎ็”ปๅƒใซไธŠๆ›ธใใ™ใ‚‹ใƒ‡ใƒขใงใ™ใ€‚

KazuhitoTakahashi 21 Oct 18, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velรกsquez Molina 1 Jan 10, 2022
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors โ€ƒโ€ƒIn order to facilitate the res

yujmo 11 Dec 12, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022