This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

Overview

pyLiDAR-SLAM

This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated and compared on a set of public Datasets.

It heavily relies on omegaconf and hydra, which allows us to easily test the different modules and parameters with few but structured configuration files.

This is a research project provided "as-is" without garanties, use at your own risk. It is actively used for Kitware Vision team internal research thus is likely to be heavily extended, rewritten (and hopefully improved) in a near future.

Overview

KITTI Sequence 00 with pyLiDAR-SLAM

pyLIDAR-SLAM is designed to be modular, multiple components are implemented at each stage of the pipeline. Its modularity can make it a bit complicated to use. We provide this wiki to help you navigate it. If you have any questions, do not hesitate raising issues.

The documentation is organised as follows:

  • INSTALLATION: Describes how to install pyLiDAR-SLAM and its different components
  • DATASETS: Describes the different datasets integrated in pyLiDAR-SLAM, and how to install them
  • TOOLBOX: Describes the contents of the toolbox and the different modules proposed
  • BENCHMARK: Describes the benchmarks supported in the Dataset /!\ Note: This section is still in construction

The goal for the future is to gradually add functionalities to pyLIDAR-SLAM (Loop Closure, Motion Segmentation, Multi-Sensors, etc...).

News

[08/10/2021]: We also introduce support for individual rosbags (Introducing naturally an overhead compared to using ROS directly, but provides the flexibility of pyLiDAR-SLAM)

[08/10/2021]: We release code for Loop Closure with pyLiDAR-SLAM accompanied with a simple PoseGraph Optimization.

[08/10/2021]: We release our new work on arXiv. It proposes a new state-of-the-art pure LiDAR odometry implemented in C++ (check the project main page). python wrappings are available, and it can be used with pyLiDAR-SLAM.

Installation

See the wiki page INSTALLATION for instruction to install the code base and the modules you are interested in.

DATASETS

pyLIDAR-SLAM incorporates different datasets, see DATASETS for installation and setup instructions for each of these datasets. Only the datasets implemented in pyLIDAR-SLAM are compatible with hydra's mode and the scripts run.py and train.py.

But you can define your own datasets by extending the class DatasetLoader.

New: We support individual rosbags (without requiring a complete ROS installation). See the minimal example for more details.

A Minimal Example

Download a rosbag (e.g. From Rosbag Cartographer): example_rosbag

Note: You need the rosbag python module installed to run this example (see INSTALLATION for instructions)

Launch the SLAM:

python3 run.py num_workers=1 /          # The number of process workers to load the dataset (should be at most 1 for a rosbag)
    slam/initialization=NI /            # The initialization considered (NI=No Initialization / CV=Constant Velocity, etc...)
    slam/preprocessing=grid_sample /    # Preprocessing on the point clouds
    slam/odometry=icp_odometry /        # The Odometry algorithm
    slam.odometry.viz_debug=True /      # Whether to launch the visualization of the odometry
    slam/loop_closure=none /            # The loop closure algorithm selected (none by default)
    slam/backend=none /                 # The backend algorithm (none by default)
    dataset=rosbag /                    # The dataset selected (a simple rosbag here)
    dataset.main_topic=horizontal_laser_3d /    # The pointcloud topic of the rosbag 
    dataset.accumulate_scans=True /             # Whether to accumulate multiple messages (a sensor can return multiple scans lines or an accumulation of scans) 
    dataset.file_path=
   
    /b3-2016-04-05-15-51-36.bag / #  The path to the rosbag file 
    hydra.run.dir=.outputs/TEST_DOC   #  The log directory where the trajectory will be saved

   

This will output the trajectory, log files (including the full config) on disk at location .outputs/TEST_DOC.

Our minimal LiDAR Odometry, is actually a naïve baseline implementation, which is mostly designed and tested on driving datasets (see the KITTI benchmark). Thus in many cases it will fail, be imprecise or too slow.

We recommend you install the module pyct_icp from our recent work, which provides a much more versatile and precise LiDAR-Odometry.

See the wiki page INSTALLATION for more details on how to install the different modules. If you want to visualize in real time the quality of the SLAM, consider also installing the module pyviz3d.

Once pyct_icp is installed, you can modify the command line above:

python3 run.py num_workers=1 /          
    slam/initialization=NI /            
    slam/preprocessing=none /    
    slam/odometry=ct_icp_robust_shaky / # The CT-ICP algorithm for shaky robot sensor (here it is for a backpack) 
    slam.odometry.viz_debug=True /      
    slam/loop_closure=none /            
    slam/backend=none /                 
    dataset=rosbag /                    
    dataset.main_topic=horizontal_laser_3d /    
    dataset.accumulate_scans=True /             
    dataset.file_path=
   
    /b3-2016-04-05-15-51-36.bag / 
    hydra.run.dir=.outputs/TEST_DOC   

   

It will launch pyct_icp on the same rosbag (running much faster than our python based odometry)

With pyviz3d you should see the following reconstruction (obtained by a backpack mounting the stairs of a museum):

Minimal Example

More advanced examples / Motivation

pyLiDAR-SLAM will progressively include more and more modules, to build more powerful and more accessible LiDAR odometries.

For a more detailed / advanced usage of the toolbox please refer to our documentation in the wiki HOME.

The motivation behind the toolbox, is really to compare different modules, hydra is very useful for this purpose.

For example the script below launches consecutively the pyct_icp and icp_odometry odometries on the same datasets.

python3 run.py -m /             # We specify the -m option to tell hydra to perform a sweep (or grid search on the given arguments)
    num_workers=1 /          
    slam/initialization=NI /            
    slam/preprocessing=none /    
    slam/odometry=ct_icp_robust_shaky, icp_odometry /   # The two parameters of the grid search: two different odometries
    slam.odometry.viz_debug=True /      
    slam/loop_closure=none /            
    slam/backend=none /                 
    dataset=rosbag /                    
    dataset.main_topic=horizontal_laser_3d /    
    dataset.accumulate_scans=True /             
    dataset.file_path=
   
    /b3-2016-04-05-15-51-36.bag / 
    hydra.run.dir=.outputs/TEST_DOC   

   

Benchmarks

We use this functionality of pyLIDAR-SLAM to compare the performances of its different modules on different datasets. In Benchmark we present the results of pyLIDAR-SLAM on the most popular open-source datasets.

Note this work in still in construction, and we aim to improve it and make it more extensive in the future.

Research results

Small improvements will be regularly made to pyLiDAR-SLAM, However major changes / new modules will more likely be introduced along research articles (which we aim to integrate with this project in the future)

Please check RESEARCH to see the research papers associated to this work.

System Tested

OS CUDA pytorch python hydra
Ubuntu 18.04 10.2 1.7.1 3.8.8 1.0

Author

This is a work realised in the context of Pierre Dellenbach PhD thesis under supervision of Bastien Jacquet (Kitware), Jean-Emmanuel Deschaud & François Goulette (Mines ParisTech).

Cite

If you use this work for your research, consider citing:

@misc{dellenbach2021s,
      title={What's in My LiDAR Odometry Toolbox?},
      author={Pierre Dellenbach, 
      Jean-Emmanuel Deschaud, 
      Bastien Jacquet,
      François Goulette},
      year={2021},
}
Owner
Kitware, Inc.
Kitware develops software for web visualization, data storage, build system generation, infovis, media analysis, biomedical inquiry, cloud computing and more.
Kitware, Inc.
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax ⚠️ Latest: Current repo is a complete version. But we delet

FishYuLi 341 Dec 23, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
The code uses SegFormer for Semantic Segmentation on Drone Dataset.

SegFormer_Segmentation The code uses SegFormer for Semantic Segmentation on Drone Dataset. The details for the SegFormer can be obtained from the foll

Dr. Sander Ali Khowaja 1 May 08, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022