(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

Overview

SSR

(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification"

[Paper] [Project webpage] [Video] [Slide]

teaser

The project is an extension work to SIB. If our project is helpful for your research, please consider citing :

@inproceedings{shen2021reranking,
  title={Re-ranking for image retrieval and transductive few-shot classification},
  author={Shen, Xi and Xiao, Yang and Hu, Shell Xu, and Sbai, Othman and Aubry, Mathieu},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Table of Content

1. Installation

Code is tested under Pytorch > 1.0 + Python 3.6 environment.

Please refer to image retrieval and transductive few-shot classification to download datasets.

2. Methods and Results

SSR learns updates for a similarity graph.

It decomposes the N * N similarity graph into N subgraphs where rows and columns of the matrix are ordered depending on similarities to the subgraph reference image.

The output of SSR is an improved similarity matrix.

teaser

2.1 Image retrieval

2.1.1 SSR module

Rows : the subgraph reference image (red) and the query image (green);

Columns : top retrieved images of the query image (green). These images are ordered according to the reference image (red).

teaser

2.1.2 Results

To reproduce the results on image retrieval datasets (rOxford5k, rParis6k), please refer to Image Retrieval

teaser

2.2 Transductive few-shot classification

2.2.1 SSR module

We illustrate our idea with an 1-shot-2way example:

Rows: the subgraph reference image (red) and the support set S;

Columns: the support set S and the query set Q. Both S and Q are ordered according to the reference image (red).

teaser

2.2.2 Results

To reproduce the results on few-shot datasets (CIFAR-FS, Mini-ImageNet, TieredImageNet), please refer to transductive few-shot classification

teaser

3. Acknowledgement

  • The implementation of k-reciprocal is adapted from its public code

  • The implementation of few-shot training, evaluation and synthetic gradient is adapted from SIB

4. ChangeLog

  • 21/10/29, model, evaluation + training released

5. License

This code is distributed under an MIT LICENSE.

Note that our code depends on Pytorch, and uses datasets which each have their own respective licenses that must also be followed.

Owner
xshen
Ph.D, Computer Vision, Deep Learning.
xshen
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

PyGOD Team 757 Jan 04, 2023
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022