Object detection GUI based on PaddleDetection

Overview

PP-Tracking GUI界面测试版

本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面

在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。

image-20211122180124835

GUI界面基于PyQT和PP-Tracking python部署代码开发;当前覆盖单镜头的全部功能,如行人跟踪,车辆跟踪,流量统计等

推荐使用Windows环境

主要包含两个步骤:

  • 导入训练模型,修改模型名称
  • 安装必要的依赖库
  • 启动前端界面

1. 下载预测模型

PP-Tracking 提供了覆盖多种场景的预测模型,用户可以根据自己的实际使用场景在链接中直接下载表格最后一列的预测部署模型

如果您想自己训练得到更符合您场景需求的模型,可以参考快速开始文档训练并导出预测模型

模型导出放在./output_inference目录下

2. 必要的依赖库安装

pyqt5
moviepy
opencv-python
PySide2
matplotlib
scipy
cython_bbox
paddlepaddle

注:

  1. Windows环境下,需要手动下载安装cython_bbox,然后将setup.py中的找到steup.py, 修改extra_compile_args=[’-Wno-cpp’],替换为extra_compile_args = {'gcc': ['/Qstd=c99']}, 然后运行python setup.py build_ext install
  2. numpy版本需要大于1.20

3. 启动前端界面

执行python main.py启动前端界面

参数说明如下:

参数 是否必须 含义
模型运行 Option 点击后进行模型训练
结果显示 Option 在运行状态为检测完成的时候进行结果视频显示
停止运行 Option 停止整个视频输出
取消轨迹 Option 在一开始时取消轨迹
阈值调试 Option 预测得分的阈值,默认为0.5
输入FPS Option 输入视频的FPS
检测用时 Option 视频的检测时间
人流量检测 Option 每隔一段帧数内的人流量统计图表
时间长度 Option 人流量时间统计长度
开启出入口 Option 导入视频后可自行选择是否开启出入口训练
导出文件 Option 可视化结果保存的根目录,默认为output/

说明:

  • 如果安装的PaddlePaddle不支持基于TensorRT进行预测,需要自行编译,详细可参考预测库编译教程
  • 建议使用windows环境进行运行
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020