Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Overview

Crowd-Kit: Computational Quality Control for Crowdsourcing

GitHub Tests Codecov

Documentation

Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets. We strive to implement functionality that simplifies working with crowdsourced data.

Currently, Crowd-Kit contains:

  • implementations of commonly-used aggregation methods for categorical, pairwise, textual, and segmentation responses
  • metrics of uncertainty, consistency, and agreement with aggregate
  • loaders for popular crowdsourced datasets

The library is currently in a heavy development state, and interfaces are subject to change.

Installing

Installing Crowd-Kit is as easy as pip install crowd-kit

Getting Started

This example shows how to use Crowd-Kit for categorical aggregation using the classical Dawid-Skene algorithm.

First, let us do all the necessary imports.

from crowdkit.aggregation import DawidSkene
from crowdkit.datasets import load_dataset

import pandas as pd

Then, you need to read your annotations into Pandas DataFrame with columns task, performer, label. Alternatively, you can download an example dataset.

df = pd.read_csv('results.csv')  # should contain columns: task, performer, label
# df, ground_truth = load_dataset('relevance-2')  # or download an example dataset

Then you can aggregate the performer responses as easily as in scikit-learn:

aggregated_labels = DawidSkene(n_iter=100).fit_predict(df)

More usage examples

Implemented Aggregation Methods

Below is the list of currently implemented methods, including the already available () and in progress ( 🟡 ).

Categorical Responses

Method Status
Majority Vote
Dawid-Skene
Gold Majority Vote
M-MSR
Wawa
Zero-Based Skill
GLAD
BCC 🟡

Textual Responses

Method Status
RASA
HRRASA
ROVER

Image Segmentation

Method Status
Segmentation MV
Segmentation RASA
Segmentation EM

Pairwise Comparisons

Method Status
Bradley-Terry
Noisy Bradley-Terry

Citation

@inproceedings{HCOMP2021/CrowdKit,
  author    = {Ustalov, Dmitry and Pavlichenko, Nikita and Losev, Vladimir and Giliazev, Iulian and Tulin, Evgeny},
  title     = {{A General-Purpose Crowdsourcing Computational Quality Control Toolkit for Python}},
  year      = {2021},
  booktitle = {The Ninth AAAI Conference on Human Computation and Crowdsourcing: Works-in-Progress and Demonstration Track},
  series    = {HCOMP~2021},
  eprint    = {2109.08584},
  eprinttype = {arxiv},
  eprintclass = {cs.HC},
  url       = {https://www.humancomputation.com/assets/wips_demos/HCOMP_2021_paper_85.pdf},
  language  = {english},
}

Questions and Bug Reports

License

© YANDEX LLC, 2020-2021. Licensed under the Apache License, Version 2.0. See LICENSE file for more details.

Comments
  • Crowd-Kit Learning

    Crowd-Kit Learning

    This is just an example of what this subpackage will contain.

    We need to configure setup.cfg and add new tests. Here I suggest to discuss the concept.

    opened by pilot7747 10
  • Fix the documentation generation issues

    Fix the documentation generation issues

    Stick to YAML files hosted in https://github.com/Toloka/docs and use the proper includes.

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [x] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [x] My change requires a change to the documentation.
    • [x] I have updated the documentation accordingly.
    • [ ] I have added tests to cover my changes.
    • [ ] All new and existing tests passed.
    documentation enhancement 
    opened by dustalov 9
  • Add MACE

    Add MACE

    Is it possible that you add MACE ? It is often used in my field but there is only a Java implementation that is hard to integrate into Python projects.

    enhancement good first issue 
    opened by jcklie 4
  • Add MACE aggregation model

    Add MACE aggregation model

    I have added the MACE aggregation model. https://www.cs.cmu.edu/~hovy/papers/13HLT-MACE.pdf

    Description

    Based on the original VB inference implementation, I wrote it in Python.

    Connected issues (if any)

    https://github.com/Toloka/crowd-kit/issues/5

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [x] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [x] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [x] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    opened by pilot7747 3
  • Documentation updates

    Documentation updates

    Updated index.md and the Classification section:

    1. added extra information to the models descriptions;
    2. added descriptions for parameters;
    3. fixed error and typos in descriptions.
    opened by Natalyl3 2
  • Binary Relevance aggregation

    Binary Relevance aggregation

    Description

    I have added code for Binary Relevance aggregation - simple method for multi-label classification. This approach treats each label as a class in binary classification task and aggregates it separately.

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [x] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [ ] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [x] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    opened by denaxen 2
  • Use mypy --strict

    Use mypy --strict

    Description

    This pull request enforces a stricter set of mypy type checks by enabling the strict mode. It also fixes several type inconsistencies. As the NumPy type annotations were introduced in version 1.20 (January 2021), some Crowd-Kit installations might broke, but I believe it is a worthy contribution.

    Connected issues (if any)

    Types of changes

    • [x] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [x] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [ ] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [x] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    enhancement 
    opened by dustalov 2
  • Run Jupyter notebooks with tests

    Run Jupyter notebooks with tests

    Description

    This pull request runs the Jupyter notebooks with examples on the current version of Crowd-Kit with the rest of the test suite on GitHub Actions.

    Connected issues (if any)

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [x] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [ ] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [x] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    enhancement good first issue 
    opened by dustalov 2
  • Dramatically improve the code maintainability

    Dramatically improve the code maintainability

    This pull request is probably the best thing that could happen to Crowd-Kit code maintainability.

    Description

    In this pull request, we switch from unnecessarily verbose Python stub files to more convenient inline type annotations. During this, many type annotations were fixed. We also removed the manage_docstring decorator and the corresponding utility functions.

    I think this change might break the documentation generation process. We will release a new version of Crowd-Kit only after this is fixed.

    Connected issues (if any)

    Types of changes

    • [x] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [x] Breaking change (fix or feature that would cause existing functionality to change)
    • [x] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [x] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [x] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    bug documentation enhancement 
    opened by dustalov 2
  • Add header and LM-based aggregation item

    Add header and LM-based aggregation item

    Description

    This pull request makes README.md nicer. It adds the missing language model-based textual aggregation method.

    Connected issues (if any)

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [x] Documentation and examples improvement (changes affected documentation and/or examples)

    Checklist:

    • [x] I have read the CONTRIBUTING document.
    • [x] I hereby agree to the terms of the CLA available at: https://yandex.ru/legal/cla/?lang=en
    • [ ] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [ ] I have added tests to cover my changes.
    • [x] All new and existing tests passed.
    documentation 
    opened by dustalov 2
  • Renamed columns?

    Renamed columns?

    Hi, the guide says

    df = pd.read_csv('results.csv') # should contain columns: task, performer, label

    but when I load this file, then the second column is worker and not performer. I had used crowdkit with dataframes that had columns: task, performer, label, but after an update, it broke.

    opened by jcklie 2
  • Ordinal Labels

    Ordinal Labels

    Is it possible to support aggregation of ordinal labels as a part of this toolkit via this reduction algorithm.

    • Labels are categorical but have an ordering defined 1 < ... < K.
    • The K class ordinal labels are transformed into K−1 binary class label data.
    • Each of the binary task is then aggregated via crowdkit to estimate Pr[yi > c] for c = 1,...,K −1.
    • The probability of the actual class values can then be obtained as Pr[yi = c] = Pr[yi > c−1 and yi ≤ c] = Pr[yi > c−1]−Pr[yi > c].
    • The class with the maximum probability is assigned to the instance
    enhancement 
    opened by vikasraykar 2
Releases(v1.2.0)
Owner
Toloka
Data labeling platform for ML
Toloka
Implementation of Stochastic Image-to-Video Synthesis using cINNs.

Stochastic Image-to-Video Synthesis using cINNs Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR202

CompVis Heidelberg 135 Dec 28, 2022
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
Automate issue discovery for your projects against Lightning nightly and releases.

Automated Testing for Lightning EcoSystem Projects Automate issue discovery for your projects against Lightning nightly and releases. You get CPUs, Mu

Pytorch Lightning 41 Dec 24, 2022
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022