End-to-end speech secognition toolkit

Overview

End-to-end speech secognition toolkit

This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9).
This is the official implementation of paper:
Consistent Training and Decoding For End-to-end Speech Recognition Using Lattice-free MMI
This is also the official implementation of paper:
Improving Mandarin End-to-End Speech Recognition with Word N-gram Language Model
We achieve state-of-the-art results on two of the most popular results in Aishell-1 and AIshell-2 Mandarin datasets.
Please feel free to change / modify the code as you like. :)

Update

  • 2021/12/29: Release the first version, which contains all MMI-related features, including MMI training criteria, MMI Prefix Score (for attention-based encoder-decoder, AED) and MMI Alignment Score (For neural transducer, NT).
  • 2022/1/6: Release the word-level N-gram LM scorer.

Environment:

The main dependencies of this code can be divided into three part: kaldi, espnet and k2.

  1. kaldi is mainly used for feature extraction. To install kaldi, please follow the instructions here.
  2. Espnet is a open-source end-to-end speech recognition toolkit. please follow the instructions here to install its environment.
    2.1. Pytorch, cudatoolkit, along with many other dependencies will be install automatically during this process. 2.2. If you are going to use NT models, you are recommend to install a RNN-T warpper. Please run ${ESPNET_ROOT}/tools/installer/install_warp-transducer.sh
    2.3. Once you have installed the espnet envrionment successfully, please run pip uninstall espnet to remove the espnet library. So our code will be used.
    2.4. Also link the kaldi in ${ESPNET_ROOT}: ln -s ${KALDI-ROOT} ${ESPNET_ROOT}
  3. k2 is a python-based FST library. Please follow the instructions here to install it. GPU version is required.
    3.1. To use word N-gram LM, please also install kaldilm
  4. There might be some dependency conflicts during building the environment. We report ours below as a reference:
    4.1 OS: CentOS 7; GCC 7.3.1; Python 3.8.10; CUDA 10.1; Pytorch 1.7.1; k2-fsa 1.2 (very old for now)
    4.2 Other python libraries are in requirement.txt (It is not recommend to use this file to build the environment directly).

Results

Currently we have released examples on Aishell-1 and Aishell-2 datasets.

With MMI training & decoding methods and the word-level N-gram LM. We achieve results on Aishell-1 and Aishell-2 as below. All results are in CER%

Test set Aishell-1-dev Aishell-1-test Aishell-2-ios Aishell-2-android Aishell-2-mic
AED 4.73 5.32 5.73 6.56 6.53
AED + MMI + Word Ngram 4.08 4.45 5.26 6.22 5.92
NT 4.41 4.81 5.70 6.75 6.58
NT + MMI + Word Ngram 3.86 4.18 5.06 6.08 5.98

(example on Librispeech is not fully prepared)

Get Start

Take Aishell-1 as an example. Working process for other examples are very similar.
Prepare data and LMs

cd ${ESPNET_ROOT}/egs/aishell1
source path.sh
bash prepare.sh # prepare the data

split the json file of training data for each GPU. (we use 8GPUs)

python3 espnet_utils/splitjson.py -p 
   
     dump/train_sp/deltafalse/data.json

   

Training and decoding for NT model:

bash nt.sh      # to train the nueal transducer model

Training and decoding for AED model:

bash aed.sh     # or to train the attention-based encoder-decoder model

Several Hint:

  1. Please change the paths in path.sh accordingly before you start
  2. Please change the data to config your data path in prepare.sh
  3. Our code runs in DDP style. Before you start, you need to set them manually. We assume Pytorch distributed API works well on your machine.
export HOST_GPU_NUM=x       # number of GPUs on each host
export HOST_NUM=x           # number of hosts
export NODE_NUM=x           # number of GPUs in total (on all hosts)
export INDEX=x              # index of this host
export CHIEF_IP=xx.xx.xx.xx # IP of the master host
  1. Multiple choices are available during decoding (we take aed.sh as an example, but the usage of nt.sh is the same).
    To use the MMI-related scorers, you need train the model with MMI auxiliary criterion;

To use MMI Prefix Score (in AED) or MMI Alignment score (in NT):

bash aed.sh --stage 2 --mmi-weight 0.2

To use any external LM, you need to train them in advance (as implemented in prepare.sh)

To use word-level N-gram LM:

bash aed.sh --stage 2 --word-ngram-weight 0.4

To use character-level N-gram LM:

bash aed.sh --stage 2 --ngram-weight 1.0

To use neural network LM:

bash aed.sh --stage 2 --lm-weight 1.0

Reference

kaldi: https://github.com/kaldi-asr/kaldi
Espent: https://github.com/espnet/espnet
k2-fsa: https://github.com/k2-fsa/k2

Citations

@article{tian2021consistent,  
  title={Consistent Training and Decoding For End-to-end Speech Recognition Using Lattice-free MMI},  
  author={Tian, Jinchuan and Yu, Jianwei and Weng, Chao and Zhang, Shi-Xiong and Su, Dan and Yu, Dong and Zou, Yuexian},  
  journal={arXiv preprint arXiv:2112.02498},  
  year={2021}  
}  

@misc{tian2022improving,
      title={Improving Mandarin End-to-End Speech Recognition with Word N-gram Language Model}, 
      author={Jinchuan Tian and Jianwei Yu and Chao Weng and Yuexian Zou and Dong Yu},
      year={2022},
      eprint={2201.01995},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Authorship

Jinchuan Tian; [email protected] or [email protected]
Jianwei Yu; [email protected] (supervisor)
Chao Weng; [email protected]
Yuexian Zou; [email protected]

Owner
Jinchuan Tian
Graduate student @ Peking University, Shenzhen; Research intern @ Tencent AI LAB;
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
LBK 35 Dec 26, 2022
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
JugLab 33 Dec 30, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021