pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Overview

Unofficial implementation:

  • MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper)
  • InsDis: Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination (Paper)

Official implementation:

  • CMC: Contrastive Multiview Coding (Paper)
  • Rethinking Image Mixture for Unsupervised Visual Representation Learning (Paper)

Contrastive Multiview Coding

This repo covers the implementation for CMC (as well as Momentum Contrast and Instance Discrimination), which learns representations from multiview data in a self-supervised way (by multiview, we mean multiple sensory, multiple modal data, or literally multiple viewpoint data. It's flexible to define what is a "view"):

"Contrastive Multiview Coding" Paper, Project Page.

Teaser Image

Highlights

(1) Representation quality as a function of number of contrasted views.

We found that, the more views we train with, the better the representation (of each single view).

(2) Contrastive objective v.s. Predictive objective

We compare the contrastive objective to cross-view prediction, finding an advantage to the contrastive approach.

(3) Unsupervised v.s. Supervised

Several ResNets trained with our unsupervised CMC objective surpasses supervisedly trained AlexNet on ImageNet classification ( e.g., 68.4% v.s. 59.3%). For this first time on ImageNet classification, unsupervised methods are surpassing the classic supervised-AlexNet proposed in 2012 (CPC++ and AMDIM also achieve this milestone concurrently).

Updates

Aug 20, 2019 - ResNets on ImageNet have been added.

Nov 26, 2019 - New results updated. Implementation of MoCo and InsDis added.

Jan 18, 2019 - Weights of InsDis and MoCo added.

Installation

This repo was tested with Ubuntu 16.04.5 LTS, Python 3.5, PyTorch 0.4.0, and CUDA 9.0. But it should be runnable with recent PyTorch versions >=0.4.0

Note: It seems to us that training with Pytorch version >= 1.0 yields slightly worse results. If you find the similar discrepancy and figure out the problem, please report this since we are trying to fix it as well.

Training AlexNet/ResNets with CMC on ImageNet

Note: For AlexNet, we split across the channel dimension and use each half to encode L and ab. For ResNets, we use a standard ResNet model to encode each view.

NCE flags:

  • --nce_k: number of negatives to contrast for each positive. Default: 4096
  • --nce_m: the momentum for dynamically updating the memory. Default: 0.5
  • --nce_t: temperature that modulates the distribution. Default: 0.07 for ImageNet, 0.1 for STL-10

Path flags:

  • --data_folder: specify the ImageNet data folder.
  • --model_path: specify the path to save model.
  • --tb_path: specify where to save tensorboard monitoring events.

Model flag:

  • --model: specify which model to use, including alexnet, resnets18, resnets50, and resnets101

IM flag:

  • --IM: train with IM space.
  • --IM_type: specify the type of IM and other augmentation methods that we implement, including: 'IM', 'global', 'region', 'Cutout', 'RandomErasing'.

Global mixture:

  • --g_alpha: global mix alpha. Default: 1.0
  • --g_num: global mix num. Default: 2
  • --g_prob: global mix prob. Default: 0.1

Region-level mixture:

  • --r_beta: region mix beta. Default: 1.0
  • --r_prob: region mix prob. Default: 0.1
  • --r_num: region mix num. Default: 2
  • --r_pixel_decay: region mix pixel decay. Default: 1.0

An example of command line for training CMC (Default: AlexNet on Single GPU)

CUDA_VISIBLE_DEVICES=0 python train_CMC.py --batch_size 256 --num_workers 36 \
 --data_folder /path/to/data 
 --model_path /path/to/save 
 --tb_path /path/to/tensorboard

Training CMC with ResNets requires at least 4 GPUs, the command of using resnet50v1 looks like

CUDA_VISIBLE_DEVICES=0,1,2,3 python train_CMC.py --model resnet50v1 --batch_size 128 --num_workers 24
 --data_folder path/to/data \
 --model_path path/to/save \
 --tb_path path/to/tensorboard \

To support mixed precision training, simply append the flag --amp, which, however is likely to harm the downstream classification. I measure it on ImageNet100 subset and the gap is about 0.5-1%.

By default, the training scripts will use L and ab as two views for contrasting. You can switch to YCbCr by specifying --view YCbCr, which yields better results (about 0.5-1%). If you want to use other color spaces as different views, follow the line here and other color transfer functions are already available in dataset.py.

Training Linear Classifier

Path flags:

  • --data_folder: specify the ImageNet data folder. Should be the same as above.
  • --save_path: specify the path to save the linear classifier.
  • --tb_path: specify where to save tensorboard events monitoring linear classifier training.

Model flag --model is similar as above and should be specified.

Specify the checkpoint that you want to evaluate with --model_path flag, this path should directly point to the .pth file.

This repo provides 3 ways to train the linear classifier: single GPU, data parallel, and distributed data parallel.

An example of command line for evaluating, say ./models/alexnet.pth, should look like:

CUDA_VISIBLE_DEVICES=0 python LinearProbing.py --dataset imagenet \
 --data_folder /path/to/data \
 --save_path /path/to/save \
 --tb_path /path/to/tensorboard \
 --model_path ./models/alexnet.pth \
 --model alexnet --learning_rate 0.1 --layer 5

Note: When training linear classifiers on top of ResNets, it's important to use large learning rate, e.g., 30~50. Specifically, change --learning_rate 0.1 --layer 5 to --learning_rate 30 --layer 6 for resnet50v1 and resnet50v2, to --learning_rate 50 --layer 6 for resnet50v3.

Pretrained Models

Pretrained weights can be found in Dropbox.

Note:

  • CMC weights are trained with NCE loss, Lab color space, 4096 negatives and amp option. Switching to softmax-ce loss, YCbCr, 65536 negatives, and turning off amp option, are likely to improve the results.
  • CMC_resnet50v2.pth and CMC_resnet50v3.pth are trained with FastAutoAugment, which improves the downstream accuracy by 0.8~1%. I will update weights without FastAutoAugment once they are available.

InsDis and MoCo are trained using the same hyperparameters as in MoCo (epochs=200, lr=0.03, lr_decay_epochs=120,160, weight_decay=1e-4), but with only 4 GPUs.

Arch #Params(M) Loss #Negative Accuracy(%) Delta(%)
InsDis ResNet50 24 NCE 4096 56.5 -
InsDis ResNet50 24 Softmax-CE 4096 57.1 +0.6
InsDis ResNet50 24 Softmax-CE 16384 58.5 +1.4
MoCo ResNet50 24 Softmax-CE 16384 59.4 +0.9

Momentum Contrast and Instance Discrimination

I have implemented and tested MoCo and InsDis on a ImageNet100 subset (but the code allows one to train on full ImageNet simply by setting the flag --dataset imagenet):

The pre-training stage:

  • For InsDis:
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_moco_ins.py \
     --batch_size 128 --num_workers 24 --nce_k 16384 --softmax
    
  • For MoCo:
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_moco_ins.py \
     --batch_size 128 --num_workers 24 --nce_k 16384 --softmax --moco
    

The linear evaluation stage:

  • For both InsDis and MoCo (lr=10 is better than 30 on this subset, for full imagenet please switch to 30):
    CUDA_VISIBLE_DEVICES=0 python eval_moco_ins.py --model resnet50 \
     --model_path /path/to/model --num_workers 24 --learning_rate 10
    

The comparison of CMC (using YCbCr), MoCo and InsDIS on my ImageNet100 subset, is tabulated as below:

Arch #Params(M) Loss #Negative Accuracy
InsDis ResNet50 24 NCE 16384 --
InsDis ResNet50 24 Softmax-CE 16384 69.1
MoCo ResNet50 24 NCE 16384 --
MoCo ResNet50 24 Softmax-CE 16384 73.4
CMC 2xResNet50half 12 NCE 4096 --
CMC 2xResNet50half 12 Softmax-CE 4096 75.8

Citation

If you find this repo useful for your research, please consider citing the paper

@article{tian2019contrastive,
  title={Contrastive Multiview Coding},
  author={Tian, Yonglong and Krishnan, Dilip and Isola, Phillip},
  journal={arXiv preprint arXiv:1906.05849},
  year={2019}
}

For any questions, please contact Yonglong Tian ([email protected]).

Acknowledgements

Part of this code is inspired by Zhirong Wu's unsupervised learning algorithm lemniscate.

Owner
Zhiqiang Shen
Zhiqiang Shen
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
LinkNet - This repository contains our Torch7 implementation of the network developed by us at e-Lab.

LinkNet This repository contains our Torch7 implementation of the network developed by us at e-Lab. You can go to our blogpost or read the article Lin

e-Lab 158 Nov 11, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021