Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Overview

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Code for the paper:

Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling", NeurIPS 2021. [arxiv] [bibtex]

Non-Newtonian Momentum Animation:

This repo contains code for implementing Energy Sampling Hamiltonian Dynamics, so-called because the Hamiltonian dynamics with this special form of Non-Newtonian momentum ergodically samples from a target un-normalized density specified by an energy function.

Requirements

The core ESH dynamics sampler code (import esh) uses only PyTorch.

python -m pip install git+https://github.com/gregversteeg/esh_dynamics

Use pip install -r requirements.txt to install requirements for all comparison code.

Usage

Here's a small example where we load a pytorch energy function, then sample Langevin versus ESH trajectories.

import torch as t
import esh  # ESH Dynamics integrator
from esh.datasets import ToyDataset  # Example energy models
from esh.samplers import hmc_integrate  # Sampling comparison methods, like Langevin

# Energy to sample - any pytorch function/module that outputs a scalar per batch item
energy = ToyDataset(toy_type='gmm').energy  # Gaussian mixture model

epsilon = 0.01  # Step size should be < 1
n_steps = 100  # Number of steps to take
x0 = t.tensor([[0., 0.5]])  # Initial state, size (batch_size, ...)
xs, vs, rs = esh.leap_integrate_chain(energy, x0, n_steps, epsilon, store=True)  # "Store" returns whole trajectory
xs_ula, vs_ula, _ = hmc_integrate(energy, x0, n_steps, epsilon=epsilon, k=1, mh_reject=False)  # Unadjusted Langevin Alg

To get just the last state instead of the whole trajectory, set store=False. To do ergodic reservoir sampling, set reservoir=True, store=False.

Generating figures

See the README in the generate_figures for scripts to generate each figure in the paper, and to see more example usage.

BibTeX

@inproceedings{esh,
  title={Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling},
  author={Greg {Ver Steeg} and Aram Galstyan},
  Booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}
Owner
Greg Ver Steeg
Research professor at USC
Greg Ver Steeg
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
Management Dashboard for Torchserve

Torchserve Dashboard Torchserve Dashboard using Streamlit Related blog post Usage Additional Requirement: torchserve (recommended:v0.5.2) Simply run:

Ceyda Cinarel 103 Dec 10, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022