PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Overview

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021)

This repository is the official implementation of Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks .

PWC

PWC

Contents

This repository contains the following PyTorch code:

  • Implementation of U-TAE spatio-temporal encoding architecture for satellite image time series UTAE
  • Implementation of Parcels-as-Points (PaPs) module for panoptic segmentation of agricultural parcels PaPs
  • Code for reproduction of the paper's results for panoptic and semantic segmentation.

Results

Our model achieves the following performance on :

PASTIS - Panoptic segmentation

Our spatio-temporal encoder U-TAE combined with our PaPs instance segmentation module achieves 40.4 Panoptic Quality (PQ) on PASTIS for panoptic segmentation. When replacing U-TAE with a convolutional LSTM the performance drops to 33.4 PQ.

Model name SQ RQ PQ
U-TAE + PaPs (ours) 81.3 49.2 40.4
UConvLSTM+PaPs 80.9 40.8 33.4

PASTIS - Semantic segmentation

Our spatio-temporal encoder U-TAE yields a semantic segmentation score of 63.1 mIoU on PASTIS, achieving an improvement of approximately 5 points compared to the best existing methods that we re-implemented (Unet-3d, Unet+ConvLSTM and Feature Pyramid+Unet). See the paper for more details.

Model name #Params OA mIoU
U-TAE (ours) 1.1M 83.2% 63.1%
Unet-3d 1.6M 81.3% 58.4%
Unet-ConvLSTM 1.5M 82.1% 57.8%
FPN-ConvLSTM 1.3M 81.6% 57.1%

Requirements

PASTIS Dataset download

The Dataset is freely available for download here.

Python requirements

To install requirements:

pip install -r requirements.txt

(torch_scatter is required for the panoptic experiments. Installing this library requires a little more effort, see the official repo)

Inference with pre-trained models

Panoptic segmentation

Pre-trained weights of U-TAE+Paps are available here

To perform inference of the pre-trained model on the test set of PASTIS run:

python test_panoptic.py --dataset_folder PATH_TO_DATASET --weight_folder PATH_TO_WEIGHT_FOLDER

Semantic segmentation

Pre-trained weights of U-TAE are available here

To perform inference of the pre-trained model on the test set of PASTIS run:

python test_semantic.py --dataset_folder PATH_TO_DATASET --weight_folder PATH_TO_WEIGHT_FOLDER

Training models from scratch

Panoptic segmentation

To reproduce the main result for panoptic segmentation (with U-TAE+PaPs) run the following :

python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR

Options are also provided in train_panoptic.py to reproduce the other results of Table 2:

python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_NoCNN --no_mask_conv
python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_UConvLSTM --backbone uconvlstm
python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_shape24 --shape_size 24

Note: By default this script runs the 5 folds of the cross validation, which can be quite long (~12 hours per fold on a Tesla V100). Use the fold argument to execute one of the 5 folds only (e.g. for the 3rd fold : python train_panoptic.py --fold 3 --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR).

Semantic segmentation

To reproduce results for semantic segmentation (with U-TAE) run the following :

python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR

And in order to obtain the results of the competing methods presented in Table 1 :

python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_UNET3d --model unet3d
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_UConvLSTM --model uconvlstm
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_FPN --model fpn
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_BUConvLSTM --model buconvlstm
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_COnvGRU --model convgru
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_ConvLSTM --model convlstm

Finally, to reproduce the ablation study presented in Table 1 :

python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_MeanAttention --agg_mode att_mean
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_SkipMeanConv --agg_mode mean
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_BatchNorm --encoder_norm batch
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_SingleDate --mono_date "08-01-2019"

Reference

Please include a citation to the following paper if you use the U-TAE, PaPs or the PASTIS benchmark.

@article{garnot2021panoptic,
  title={Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks},
  author={Sainte Fare Garnot, Vivien  and Landrieu, Loic },
  journal={ICCV},
  year={2021}
}

Credits

  • This work was partly supported by ASP, the French Payment Agency.

  • Code for the presented methods and dataset is original code by Vivien Sainte Fare Garnot, competing methods and some utility functions were adapted from existing repositories which are credited in the corresponding files.

Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022