Differentiable Optimizers with Perturbations in Pytorch

Overview

Differentiable Optimizers with Perturbations in PyTorch

This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tensorflow. All credit belongs to the original authors which can be found below. The source code, tests, and examples given below are a one-to-one copy of the original work, but with pure PyTorch implementations.

Overview

We propose in this work a universal method to transform any optimizer in a differentiable approximation. We provide a PyTorch implementation, illustrated here on some examples.

Perturbed argmax

We start from an original optimizer, an argmax function, computed on an example input theta.

import torch
import torch.nn.functional as F
import perturbations

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def argmax(x, axis=-1):
    return F.one_hot(torch.argmax(x, dim=axis), list(x.shape)[axis]).float()

This function returns a one-hot corresponding to the largest input entry.

>>> argmax(torch.tensor([-0.6, 1.9, -0.2, 1.1, -1.0]))
tensor([0., 1., 0., 0., 0.])

It is possible to modify the function by creating a perturbed optimizer, using Gumbel noise.

pert_argmax = perturbations.perturbed(argmax,
                                      num_samples=1000000,
                                      sigma=0.5,
                                      noise='gumbel',
                                      batched=False,
                                      device=device)
>>> theta = torch.tensor([-0.6, 1.9, -0.2, 1.1, -1.0], device=device)
>>> pert_argmax(theta)
tensor([0.0055, 0.8150, 0.0122, 0.1648, 0.0025], device='cuda:0')

In this particular case, it is equal to the usual softmax with exponential weights.

>>> sigma = 0.5
>>> F.softmax(theta/sigma, dim=-1)
tensor([0.0055, 0.8152, 0.0122, 0.1646, 0.0025], device='cuda:0')

Batched version

The original function can accept a batch dimension, and is applied to every element of the batch.

theta_batch = torch.tensor([[-0.6, 1.9, -0.2, 1.1, -1.0],
                            [-0.6, 1.0, -0.2, 1.8, -1.0]], device=device, requires_grad=True)
>>> argmax(theta_batch)
tensor([[0., 1., 0., 0., 0.],
        [0., 0., 0., 1., 0.]], device='cuda:0')

Likewise, if the argument batched is set to True (its default value), the perturbed optimizer can handle a batch of inputs.

pert_argmax = perturbations.perturbed(argmax,
                                      num_samples=1000000,
                                      sigma=0.5,
                                      noise='gumbel',
                                      batched=True,
                                      device=device)
>>> pert_argmax(theta_batch)
tensor([[0.0055, 0.8158, 0.0122, 0.1640, 0.0025],
        [0.0066, 0.1637, 0.0147, 0.8121, 0.0030]], device='cuda:0')

It can be compared to its deterministic version, the softmax.

>>> F.softmax(theta_batch/sigma, dim=-1)
tensor([[0.0055, 0.8152, 0.0122, 0.1646, 0.0025],
        [0.0067, 0.1639, 0.0149, 0.8116, 0.0030]], device='cuda:0')

Decorator version

It is also possible to use the perturbed function as a decorator.

@perturbations.perturbed(num_samples=1000000, sigma=0.5, noise='gumbel', batched=True, device=device)
def argmax(x, axis=-1):
  	return F.one_hot(torch.argmax(x, dim=axis), list(x.shape)[axis]).float()
>>> argmax(theta_batch)
tensor([[0.0054, 0.8148, 0.0121, 0.1652, 0.0024],
        [0.0067, 0.1639, 0.0148, 0.8116, 0.0029]], device='cuda:0')

Gradient computation

The Perturbed optimizers are differentiable, and the gradients can be computed with stochastic estimation automatically. In this case, it can be compared directly to the gradient of softmax.

output = pert_argmax(theta_batch)
square_norm = torch.linalg.norm(output)
square_norm.backward(torch.ones_like(square_norm))
grad_pert = theta_batch.grad
>>> grad_pert
tensor([[-0.0072,  0.1708, -0.0132, -0.1476, -0.0033],
        [-0.0068, -0.1464, -0.0173,  0.1748, -0.0046]], device='cuda:0')

Compared to the same computations with a softmax.

output = F.softmax(theta_batch/sigma, dim=-1)
square_norm = torch.linalg.norm(output)
square_norm.backward(torch.ones_like(square_norm))
grad_soft = theta_batch.grad
>>> grad_soft
tensor([[-0.0064,  0.1714, -0.0142, -0.1479, -0.0029],
        [-0.0077, -0.1457, -0.0170,  0.1739, -0.0035]], device='cuda:0')

Perturbed OR

The OR function over the signs of inputs, that is an example of optimizer, offers a well-interpretable visualization.

def hard_or(x):
    s = ((torch.sign(x) + 1) / 2.0).type(torch.bool)
    result = torch.any(s, dim=-1)
    return result.type(torch.float) * 2.0 - 1

In the following batch of two inputs, both instances are evaluated as True (value 1).

theta = torch.tensor([[-5., 0.2],
                      [-5., 0.1]], device=device)
>>> hard_or(theta)
tensor([1., 1.])

Computing a perturbed OR operator over 1000 samples shows the difference in value for these two inputs.

pert_or = perturbations.perturbed(hard_or,
                                  num_samples=1000,
                                  sigma=0.1,
                                  noise='gumbel',
                                  batched=True,
                                  device=device)
>>> pert_or(theta)
tensor([1.0000, 0.8540], device='cuda:0')

This can be vizualized more broadly, for values between -1 and 1, as well as the evaluated values of the gradient.

Perturbed shortest path

This framework can also be easily applied to more complex optimizers, such as a blackbox shortest paths solver (here the function shortest_path). We consider a small example on 9 nodes, illustrated here with the shortest path between 0 and 8 in bold, and edge costs labels.

We also consider a function of the perturbed solution: the weight of this solution on the edgebetween nodes 6 and 8.

A gradient of this function with respect to a vector of four edge costs (top-rightmost, between nodes 4, 5, 6, and 8) is automatically computed. This can be used to increase the weight on this edge of the solution by changing these four costs. This is challenging to do with first-order methods using only an original optimizer, as its gradient would be zero almost everywhere.

final_edges_costs = torch.tensor([0.4, 0.1, 0.1, 0.1], device=device, requires_grad=True)
weights = edge_costs_to_weights(final_edges_costs)

@perturbations.perturbed(num_samples=100000, sigma=0.05, batched=False, device=device)
def perturbed_shortest_path(weights):
    return shortest_path(weights, symmetric=False)

We obtain a perturbed solution to the shortest path problem on this graph, an average of solutions under perturbations on the weights.

>>> perturbed_shortest_path(weights)
tensor([[0.    0.    0.001 0.025 0.    0.    0.    0.    0.   ]
        [0.    0.    0.    0.    0.023 0.    0.    0.    0.   ]
        [0.679 0.    0.    0.119 0.    0.    0.    0.    0.   ]
        [0.304 0.    0.    0.    0.    0.    0.    0.    0.   ]
        [0.    0.023 0.    0.    0.    0.898 0.    0.    0.   ]
        [0.    0.    0.001 0.    0.    0.    0.896 0.    0.   ]
        [0.    0.    0.    0.    0.    0.001 0.    0.974 0.   ]
        [0.    0.    0.797 0.178 0.    0.    0.    0.    0.   ]
        [0.    0.    0.    0.    0.921 0.    0.079 0.    0.   ]])

For illustration, this solution can be represented with edge width proportional to the weight of the solution.

We consider an example of scalar function on this solution, here the weight of the perturbed solution on the edge from node 6 to 8 (of current value 0.079).

def i_to_j_weight_fn(i, j, paths):
    return paths[..., i, j]

weights = edge_costs_to_weights(final_edges_costs)
pert_paths = perturbed_shortest_path(weights)
i_to_j_weight = pert_paths[..., 8, 6]
i_to_j_weight.backward(torch.ones_like(i_to_j_weight))
grad = final_edges_costs.grad

This provides a direction in which to modify the vector of four edge costs, to increase the weight on this solution, obtained thanks to our perturbed version of the optimizer.

>>> grad
tensor([-2.0993764,  2.076386 ,  2.042395 ,  2.0411625], device='cuda:0')

Running gradient ascent for 30 steps on this vector of four edge costs to increase the weight of the edge from 6 to 8 modifies the problem. Its new perturbed solution has a corresponding edge weight of 0.989. The new problem and its perturbed solution can be vizualized as follows.

References

Berthet Q., Blondel M., Teboul O., Cuturi M., Vert J.-P., Bach F., Learning with Differentiable Perturbed Optimizers, NeurIPS 2020

License

Please see the original repository for proper details.

Owner
Jake Tuero
PhD student at University of Alberta
Jake Tuero
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
Unsupervised Image-to-Image Translation

UNIT: UNsupervised Image-to-image Translation Networks Imaginaire Repository We have a reimplementation of the UNIT method that is more performant. It

Ming-Yu Liu εŠ‰ζ΄Ίε ‰ 1.9k Dec 26, 2022
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection

Adaptive Class Suppression Loss for Long-Tail Object Detection This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppressio

CASIA-IVA-Lab 67 Dec 04, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding πŸ“‹ This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022