Object detection, 3D detection, and pose estimation using center point detection:

Overview

Objects as Points

Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points,
Xingyi Zhou, Dequan Wang, Philipp Krähenbühl,
arXiv technical report (arXiv 1904.07850)

Contact: [email protected]. Any questions or discussions are welcomed!

Updates

  • (June, 2020) We released a state-of-the-art Lidar-based 3D detection and tracking framework CenterPoint.
  • (April, 2020) We released a state-of-the-art (multi-category-/ pose-/ 3d-) tracking extension CenterTrack.

Abstract

Detection identifies objects as axis-aligned boxes in an image. Most successful object detectors enumerate a nearly exhaustive list of potential object locations and classify each. This is wasteful, inefficient, and requires additional post-processing. In this paper, we take a different approach. We model an object as a single point -- the center point of its bounding box. Our detector uses keypoint estimation to find center points and regresses to all other object properties, such as size, 3D location, orientation, and even pose. Our center point based approach, CenterNet, is end-to-end differentiable, simpler, faster, and more accurate than corresponding bounding box based detectors. CenterNet achieves the best speed-accuracy trade-off on the MS COCO dataset, with 28.1% AP at 142 FPS, 37.4% AP at 52 FPS, and 45.1% AP with multi-scale testing at 1.4 FPS. We use the same approach to estimate 3D bounding box in the KITTI benchmark and human pose on the COCO keypoint dataset. Our method performs competitively with sophisticated multi-stage methods and runs in real-time.

Highlights

  • Simple: One-sentence method summary: use keypoint detection technic to detect the bounding box center point and regress to all other object properties like bounding box size, 3d information, and pose.

  • Versatile: The same framework works for object detection, 3d bounding box estimation, and multi-person pose estimation with minor modification.

  • Fast: The whole process in a single network feedforward. No NMS post processing is needed. Our DLA-34 model runs at 52 FPS with 37.4 COCO AP.

  • Strong: Our best single model achieves 45.1AP on COCO test-dev.

  • Easy to use: We provide user friendly testing API and webcam demos.

Main results

Object Detection on COCO validation

Backbone AP / FPS Flip AP / FPS Multi-scale AP / FPS
Hourglass-104 40.3 / 14 42.2 / 7.8 45.1 / 1.4
DLA-34 37.4 / 52 39.2 / 28 41.7 / 4
ResNet-101 34.6 / 45 36.2 / 25 39.3 / 4
ResNet-18 28.1 / 142 30.0 / 71 33.2 / 12

Keypoint detection on COCO validation

Backbone AP FPS
Hourglass-104 64.0 6.6
DLA-34 58.9 23

3D bounding box detection on KITTI validation

Backbone FPS AP-E AP-M AP-H AOS-E AOS-M AOS-H BEV-E BEV-M BEV-H
DLA-34 32 96.9 87.8 79.2 93.9 84.3 75.7 34.0 30.5 26.8

All models and details are available in our Model zoo.

Installation

Please refer to INSTALL.md for installation instructions.

Use CenterNet

We support demo for image/ image folder, video, and webcam.

First, download the models (By default, ctdet_coco_dla_2x for detection and multi_pose_dla_3x for human pose estimation) from the Model zoo and put them in CenterNet_ROOT/models/.

For object detection on images/ video, run:

python demo.py ctdet --demo /path/to/image/or/folder/or/video --load_model ../models/ctdet_coco_dla_2x.pth

We provide example images in CenterNet_ROOT/images/ (from Detectron). If set up correctly, the output should look like

For webcam demo, run

python demo.py ctdet --demo webcam --load_model ../models/ctdet_coco_dla_2x.pth

Similarly, for human pose estimation, run:

python demo.py multi_pose --demo /path/to/image/or/folder/or/video/or/webcam --load_model ../models/multi_pose_dla_3x.pth

The result for the example images should look like:

You can add --debug 2 to visualize the heatmap outputs. You can add --flip_test for flip test.

To use this CenterNet in your own project, you can

import sys
CENTERNET_PATH = /path/to/CenterNet/src/lib/
sys.path.insert(0, CENTERNET_PATH)

from detectors.detector_factory import detector_factory
from opts import opts

MODEL_PATH = /path/to/model
TASK = 'ctdet' # or 'multi_pose' for human pose estimation
opt = opts().init('{} --load_model {}'.format(TASK, MODEL_PATH).split(' '))
detector = detector_factory[opt.task](opt)

img = image/or/path/to/your/image/
ret = detector.run(img)['results']

ret will be a python dict: {category_id : [[x1, y1, x2, y2, score], ...], }

Benchmark Evaluation and Training

After installation, follow the instructions in DATA.md to setup the datasets. Then check GETTING_STARTED.md to reproduce the results in the paper. We provide scripts for all the experiments in the experiments folder.

Develop

If you are interested in training CenterNet in a new dataset, use CenterNet in a new task, or use a new network architecture for CenterNet, please refer to DEVELOP.md. Also feel free to send us emails for discussions or suggestions.

Third-party resources

License

CenterNet itself is released under the MIT License (refer to the LICENSE file for details). Portions of the code are borrowed from human-pose-estimation.pytorch (image transform, resnet), CornerNet (hourglassnet, loss functions), dla (DLA network), DCNv2(deformable convolutions), tf-faster-rcnn(Pascal VOC evaluation) and kitti_eval (KITTI dataset evaluation). Please refer to the original License of these projects (See NOTICE).

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{zhou2019objects,
  title={Objects as Points},
  author={Zhou, Xingyi and Wang, Dequan and Kr{\"a}henb{\"u}hl, Philipp},
  booktitle={arXiv preprint arXiv:1904.07850},
  year={2019}
}
Owner
Xingyi Zhou
CS Ph.D. student at UT Austin.
Xingyi Zhou
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection

QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O

Chenhongyi Yang 276 Dec 31, 2022
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
A TensorFlow implementation of SOFA, the Simulator for OFfline LeArning and evaluation.

SOFA This repository is the implementation of SOFA, the Simulator for OFfline leArning and evaluation. Keeping Dataset Biases out of the Simulation: A

22 Nov 23, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022