An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

Overview

OptiCL

OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in which a practitioner wishes to optimize decisions according to some objective and constraints, but that we have no known functions relating our decisions to the outcomes of interest. We propose to learn predictive models for these outcomes using machine learning, and to subsequently optimize decisions by embedding the learned models in a larger MIO formulation.

The framework and full methodology are detailed in our manuscript, Mixed-Integer Optimization with Constraint Learning.

How to use OptiCL

You can install the OptiCL package locally by cloning the repository and running pip install . within the home directory of the repo. This will allow you to load opticl in Python; see the example notebooks for specific usage of the functions.

The OptiCL pipeline

Our pipeline requires two inputs from a user:

  • Training data, with features classified as contextual variables, decisions, and outcomes.
  • An initial conceptual model, which is defined by specifying the decision variables and any domain-driven fixed constraints or deterministic objective terms.

Given these inputs, we implement a pipeline that:

  1. Learns predictive models for the outcomes of interest by using a moel training and selection pipeline with cross-validation.
  2. Efficiently charactertizes the feasible decision space, or "trust region," using the convex hull of the observed data.
  3. Embeds the learned models and trust region into a MIO formulation, which can then be solved using a Pyomo-supported MIO solver (e.g., Gurobi).

OptiCL requires no manual specification of a trained ML model, although the end-user can optionally restrict to a subset of model types to be considered in the selection pipeline. Furthermore, we expose the underlying trained models within the pipeline, providing transparency and allowing for the predictive models to be externally evaluated.

Examples

We illustrate the full OptiCL pipeline in three notebooks:

  • A case study on food basket optimization for the World Food Programme (notebooks/WFP/The Palatable Diet Problem.ipynb): This notebook presents a simplified version of the case study in the manuscript. It shows how to train and select models for a single learned outcome, define a conceptual model with a known objective and constraints, and solve the MIO with an additional learned constraint.
  • A general pipeline overview (notebooks/Pipeline/Model_embedding.ipynb): This notebook demonstrates the general features of the pipleine, including the procedure for training and embedding models for multiple outcomes, the specification of each outcome as either a constraint or objective term, and the incorporation of contextual features and domain-driven constraints.
  • Model verification (notebooks/Pipeline/Model_Verification_Regression.ipynb, notebooks/Pipeline/Model_Verification_Classification.ipynb): These notebooks shows the training and embedding of a single model and compares the sklearn predictions to the MIO predictions to verify the MIO embeddings. The classification notebook also provides details on how we linearize constraints for the binary classification setting.

The package currently fully supports model training and embedding for continuous outcomes across all ML methods, as demonstrated in the example notebooks. Binary classification is fully supported for learned constraints. Multi-class classification support is in development.

Citation

Our software can be cited as:

  @misc{OptiCL,
    author = "Donato Maragno and Holly Wiberg",
    title = "OptiCL: Mixed-integer optimization with constraint learning",
    year = 2021,
    url = "https://github.com/hwiberg/OptiCL/"
  }

Get in touch!

Our package is under active development. We welcome any questions or suggestions. Please submit an issue on Github, or reach us at [email protected] and [email protected].

Owner
Holly Wiberg
Holly Wiberg
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022
A simple Python configuration file operator.

A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i

Scott Lau 2 Nov 08, 2021
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023