Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

Overview

NonCuboidRoom

Paper

Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiaojun Yuan.

[Preprint] [Supplementary Material]

(*: Equal contribution)

Installation

The code is tested with Ubuntu 16.04, PyTorch v1.5, CUDA 10.1 and cuDNN v7.6.

# create conda env
conda create -n layout python=3.6
# activate conda env
conda activate layout
# install pytorch
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1 -c pytorch
# install dependencies
pip install -r requirements.txt

Data Preparation

Structured3D Dataset

Please download Structured3D dataset and our processed 2D line annotations. The directory structure should look like:

data
└── Structured3D
    │── Structured3D
    │   ├── scene_00000
    │   ├── scene_00001
    │   ├── scene_00002
    │   └── ...
    └── line_annotations.json

SUN RGB-D Dataset

Please download SUN RGB-D dataset, our processed 2D line annotation for SUN RGB-D dataset, and layout annotations of NYUv2 303 dataset. The directory structure should look like:

data
└── SUNRGBD
    │── SUNRGBD
    │    ├── kv1
    │    ├── kv2
    │    ├── realsense
    │    └── xtion
    │── sunrgbd_train.json      // our extracted 2D line annotations of SUN RGB-D train set
    │── sunrgbd_test.json       // our extracted 2D line annotations of SUN RGB-D test set
    └── nyu303_layout_test.npz  // 2D ground truth layout annotations provided by NYUv2 303 dataset

Pre-trained Models

You can download our pre-trained models here:

  • The model trained on Structured3D dataset.
  • The model trained on SUN RGB-D dataset and NYUv2 303 dataset.

Structured3D Dataset

To train the model on the Structured3D dataset, run this command:

python train.py --model_name s3d --data Structured3D

To evaluate the model on the Structured3D dataset, run this command:

python test.py --pretrained DIR --data Structured3D

NYUv2 303 Dataset

To train the model on the SUN RGB-D dataset and NYUv2 303 dataset, run this command:

# first fine-tune the model on the SUN RGB-D dataset
python train.py --model_name sunrgbd --data SUNRGBD --pretrained Structure3D_DIR --split all --lr_step []
# Then fine-tune the model on the NYUv2 subset
python train.py --model_name nyu --data SUNRGBD --pretrained SUNRGBD_DIR --split nyu --lr_step [] --epochs 10

To evaluate the model on the NYUv2 303 dataset, run this command:

python test.py --pretrained DIR --data NYU303

Inference on the customized data

To predict the results of customized images, run this command:

python test.py --pretrained DIR --data CUSTOM

Citation

@article{NonCuboidRoom,
  title   = {Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image},
  author  = {Cheng Yang and
             Jia Zheng and
             Xili Dai and
             Rui Tang and
             Yi Ma and
             Xiaojun Yuan},
  journal = {CoRR},
  volume  = {abs/2104.07986},
  year    = {2021}
}

LICENSE

The code is released under the MIT license. Portions of the code are borrowed from HRNet-Object-Detection and CenterNet.

Acknowledgements

We would like to thank Lei Jin for providing us the code for parsing the layout annotations in SUN RGB-D dataset.

KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Jingwen Wang 80 Jan 03, 2023
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"

forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7

Kim Heecheol 65 Oct 06, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY 모델의 구조는 크게 6단계로 나뉩니다. STEP 0: Input Image Predict 할 이미지를 모델에 입력합니다. STEP 1: Make Black and White Image STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을

Juwan HAN 1 Feb 09, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022