Baseline powergrid model for NY

Related tags

Deep LearningNYgrid
Overview

Baseline-powergrid-model-for-NY

Table of Contents
  1. About The Project
  2. Usage
  3. License
  4. Contact
  5. Acknowledgements

About The Project

As the urgency to address climate change intensifies, the integration of distributed and intermittent renewable resources in power grids will continue to accelerate. To ensure the reliability and efficacy of the transformed system, researchers and other stakeholders require a validated representation of the essential characteristics of the power grid that is accurate for a specific region under study. For example, the Climate Leadership and Community Protection Act (CLCPA) in New York sets ambitious targets for transformation of the energy system, opening many interesting research and analysis questions. To provide a platform for these analyses, this paper presents an overview of the current NYS power grid and develops an open-source1 baseline model using only publicly available data. The proposed model is validated with real data for power flow and Locational Marginal Prices (LMPs) to demonstrate the feasibility, functionality and consistency of the model with hourly data of 2019 as an example. The model is easily adjustable and customizable for various analyses of future configurations and scenarios that require spatial-temporal information of the NYS power grid with data access to all the available historical data, and serves as a practical system for general methods and algorithms testing.

Built With

The code is written with Matlab and depends on the installation of Matpower. Please go to the following websties and follow the instructions to install Matlab and Matpower.

Usage

  1. git clone https://github.com/AndersonEnergyLab-Cornell/NYgrid
  2. Add the full folder and the subfolders to your Matlab Path
  3. Modify the main.m file to run a specific case

Main.m

Specify a year, and download and format the data in that year. Downlaoded data are stored in the "Prep" directory. Formatted data are stored in the "Data" directory. For example, to run for Jan 1st 2019 1:00 am, modify the test year, month, day and hour.

  testyear = 2019;
  testmonth = 1;
  testday = 1;
  testhour = 1;

Data sources include:

  1. NYISO:
    • hourly fuel mix
    • hourly interface flow
    • hourly real time price
  2. RGGI:
    • hourly generation for thermal generators larger than 25 MW
  3. NRC:
    • Daily nuclear capacity factor
  4. EIA:
    • Monthly hydro generation data for Niagara and St. Lawrence

The main function first update the operation condition for load and generators from the historical data and store the modified mpc struct in mpcreduced Then it automatically calls the Optimal Power Flow and Power Flow test and store the result in resultOPF and resultPF, respectively.

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Vivienne Liu - [email protected]

Project Link: https://github.com/AndersonEnergyLab-Cornell/NYgrid

Acknowledgements

Owner
Anderson Energy Lab at Cornell
Cornell Research lab on sustainable energy, led by Prof. Lindsay Anderson
Anderson Energy Lab at Cornell
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
RoBERTa Marathi Language model trained from scratch during huggingface 🤗 x flax community week

RoBERTa base model for Marathi Language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa wa

Nipun Sadvilkar 23 Oct 19, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
It is a system used to detect bone fractures. using techniques deep learning and image processing

MohammedHussiengadalla-Intelligent-Classification-System-for-Bone-Fractures It is a system used to detect bone fractures. using techniques deep learni

Mohammed Hussien 7 Nov 11, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022