pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

Overview

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021)

By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem

Paper | Video | Tutorial .

PWC PWC PWCPWC

MVTN pipeline

The official Pytroch code of ICCV 2021 paper MVTN: Multi-View Transformation Network for 3D Shape Recognition. MVTN learns to transform the rendering parameters of a 3D object to improve the perspectives for better recognition by multi-view netowkrs. Without extra supervision or add loss, MVTN improve the performance in 3D classification and shape retrieval. MVTN achieves state-of-the-art performance on ModelNet40, ShapeNet Core55, and the most recent and realistic ScanObjectNN dataset (up to 6% improvement).

Citation

If you find our work useful in your research, please consider citing:

@InProceedings{Hamdi_2021_ICCV,
    author    = {Hamdi, Abdullah and Giancola, Silvio and Ghanem, Bernard},
    title     = {MVTN: Multi-View Transformation Network for 3D Shape Recognition},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {1-11}
}

Requirement

This code is tested with Python 3.7 and Pytorch >= 1.5

conda create -y -n MVTN python=3.7
conda activate MVTN
conda install -c pytorch pytorch=1.7.1 torchvision cudatoolkit=10.2
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c bottler nvidiacub
conda install pytorch3d -c pytorch3d
  • install other helper libraries
conda install pandas
conda install -c conda-forge trimesh
pip install einops imageio scipy matplotlib tensorboard h5py metric-learn

Usage: 3D Classification & Retrieval

The main Python script in the root directorty run_mvtn.py.

First download the datasets and unzip inside the data/ directories as follows:

  • ModelNet40 this link (ModelNet objects meshes are simplified to fit the GPU and allows for backpropogation ).

  • ShapeNet Core55 v2 this link ( You need to create an account)

  • ScanObjectNN this link (ScanObjectNN with its three main variants [obj_only ,with_bg , hardest] controlled by the --dset_variant option ).

Then you can run MVTN with

python run_mvtn.py --data_dir data/ModelNet40/ --run_mode train --mvnetwork mvcnn --nb_views 8 --views_config learned_spherical  
  • --data_dir the data directory. The dataloader is picked adaptively from custom_dataset.py based on the choice between "ModelNet40", "ShapeNetCore.v2", or the "ScanObjectNN" choice.
  • --run_mode is the run mode. choices: "train"(train for classification), "test_cls"(test classification after training), "test_retr"(test retrieval after training), "test_rot"(test rotation robustness after training), "test_occ"(test occlusion robustness after training)
  • --mvnetwork is the multi-view network used in the pipeline. Choices: "mvcnn" , "rotnet", "viewgcn"
  • --views_config is one of six view selection methods that are either learned or heuristics : choices: "circular", "random", "spherical" "learned_circular" , "learned_spherical" , "learned_direct". Only the ones that are learned are MVTN variants.
  • --resume a flag to continue training from last checkpoint.
  • --pc_rendering : a flag if you want to use point clouds instead of mesh data and point cloud rendering instead of mesh rendering. This should be default when only point cloud data is available ( like in ScanObjectNN dataset)
  • --object_color: is the uniform color of the mesh or object rendered. default="white", choices=["white", "random", "black", "red", "green", "blue", "custom"]

Other parameters can be founded in config.yaml configuration file or run python run_mvtn.py -h. The default parameters are the ones used in the paper.

The results will be saved in results/00/0001/ folder that contaions the camera view points and the renderings of some example as well the checkpoints and the logs.

Note: For best performance on point cloud tasks, please set canonical_distance : 1.0 in the config.yaml file. For mesh tasks, keep as is.

Other files

  • models/renderer.py contains the main Pytorch3D differentiable renderer class that can render multi-view images for point clouds and meshes adaptively.
  • models/mvtn.py contains a standalone class for MVTN that can be used with any other pipeline.
  • custom_dataset.py includes all the pytorch dataloaders for 3D datasets: ModelNet40, SahpeNet core55 ,ScanObjectNN, and ShapeNet Parts
  • blender_simplify.py is the Blender code used to simplify the meshes with simplify_mesh function from util.py as the following :
simplify_ratio  = 0.05 # the ratio of faces to be maintained after simplification 
input_mesh_file = os.path.join(data_dir,"ModelNet40/plant/train/plant_0014.off") 
mymesh, reduced_mesh = simplify_mesh(input_mesh_file,simplify_ratio=simplify_ratio)

The output simplified mesh will be saved in the same directory of the original mesh with "SMPLER" appended to the name

Misc

  • Please open an issue or contact Abdullah Hamdi ([email protected]) if there is any question.

Acknoledgements

This paper and repo borrows codes and ideas from several great github repos: MVCNN pytorch , view GCN, RotationNet and most importantly the great Pytorch3D library.

License

The code is released under MIT License (see LICENSE file for details).

Owner
Abdullah Hamdi
Deep Learning , Machine Learning , Game Design , Artificial Intelligence , Virtual Reality.
Abdullah Hamdi
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
The code used for the free [email protected] Webinar series on Reinforcement Learning in Finance

Reinforcement Learning in Finance [email protected] Webinar This repository provides the code f

Yves Hilpisch 62 Dec 22, 2022
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
[ICRA2021] Reconstructing Interactive 3D Scene by Panoptic Mapping and CAD Model Alignment

Interactive Scene Reconstruction Project Page | Paper This repository contains the implementation of our ICRA2021 paper Reconstructing Interactive 3D

97 Dec 28, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022