Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

Related tags

Deep LearningDsig
Overview

DSIG

Deep Structured Instance Graph for Distilling Object Detectors

Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia.

[pdf] [slide] [supp] [bibtex]

This repo provides the implementation of paper "Deep Structured Instance Graph for Distilling Object Detectors"(Dsig) based on detectron2. Specifically, aiming at solving the feature imbalance problem while further excavating the missing relation inside semantic instances, we design a graph whose nodes correspond to instance proposal-level features and edges represent the relation between nodes. We achieve new state-of-the-art results on the COCO object detection task with diverse student-teacher pairs on both one- and two-stage detectors.

Installation

Requirements

  • Python >= 3.6
  • Pytorch >= 1.7.0
  • Torchvision >= 0.8.1
  • Pycocotools 2.0.2

Follow the install instructions in detectron2, note that in this repo we use detectron2 commit version ff638c931d5999f29c22c1d46a3023e67a5ae6a1. Download COCO dataset and export DETECTRON2_DATASETS=$COCOPATH to direct to COCO dataset. We prepare our pre-trained weights for training in Student-Teacher format, please follow the instructions in Pretrained.

Running

We prepare training configs following the detectron2 format. For training a Faster R-CNN R18-FPN student with a Faster R-CNN R50-FPN teacher on 4 GPUs:

./start_train.sh train projects/Distillation/configs/Distillation-FasterRCNN-R18-R50-dsig-1x.yaml

For testing:

./start_train.sh eval projects/Distillation/configs/Distillation-FasterRCNN-R18-R50-dsig-1x.yaml

For debugging:

./start_train.sh debugtrain projects/Distillation/configs/Distillation-FasterRCNN-R18-R50-dsig-1x.yaml

Results and Models

Faster R-CNN:

Experiment(Student-Teacher) Schedule AP Config Model
R18-R50 1x 37.25 config googledrive
R50-R101 1x 40.57 config googledrive
R101-R152 1x 41.65 config googledrive
MNV2-R50 1x 34.44 config googledrive
EB0-R101 1x 37.74 config googledrive

RetinaNet:

Experiment(Student-Teacher) Schedule AP Config Model
R18-R50 1x 34.72 config googledrive
MNV2-R50 1x 32.16 config googledrive
EB0-R101 1x 34.44 config googledrive

More models and results will be released soon.

Citation

@inproceedings{chen2021dsig,
    title={Deep Structured Instance Graph for Distilling Object Detectors},
    author={Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, and Jiaya Jia},
    booktitle={IEEE International Conference on Computer Vision (ICCV)},
    year={2021},
}

Contact

Please contact [email protected].

Owner
DV Lab
Deep Vision Lab
DV Lab
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
🕺Full body detection and tracking

Pose-Detection 🤔 Overview Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign

Abbas Ataei 20 Nov 21, 2022
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
Nest Protect integration for Home Assistant. This will allow you to integrate your smoke, heat, co and occupancy status real-time in HA.

Nest Protect integration for Home Assistant Custom component for Home Assistant to interact with Nest Protect devices via an undocumented and unoffici

Mick Vleeshouwer 175 Dec 29, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023