Official implementation of "Generating 3D Molecules for Target Protein Binding"

Related tags

Deep LearningGraphBP
Overview

Generating 3D Molecules for Target Protein Binding

This is the official implementation of the GraphBP method proposed in the following paper.

Meng Liu, Youzhi Luo, Kanji Uchino, Koji Maruhashi, and Shuiwang Ji. "Generating 3D Molecules for Target Protein Binding".

Requirements

We include key dependencies below. The versions we used are in the parentheses. Our detailed environmental setup is available in environment.yml.

  • PyTorch (1.9.0)
  • PyTorch Geometric (1.7.2)
  • rdkit-pypi (2021.9.3)
  • biopython (1.79)
  • openbabel (3.3.1)

Preparing Data

  • Download and extract the CrossDocked2020 dataset:
wget https://bits.csb.pitt.edu/files/crossdock2020/CrossDocked2020_v1.1.tgz -P data/crossdock2020/
tar -C data/crossdock2020/ -xzf data/crossdock2020/CrossDocked2020_v1.1.tgz
wget https://bits.csb.pitt.edu/files/it2_tt_0_lowrmsd_mols_train0_fixed.types -P data/crossdock2020/
wget https://bits.csb.pitt.edu/files/it2_tt_0_lowrmsd_mols_test0_fixed.types -P data/crossdock2020/

Note: (1) The unzipping process could take a lot of time. Unzipping on SSD is much faster!!! (2) Several samples in the training set cannot be processed by our code. Hence, we recommend replacing the it2_tt_0_lowrmsd_mols_train0_fixed.types file with a new one, where these samples are deleted. The new one is available here.

  • Split data files:
python scripts/split_sdf.py data/crossdock2020/it2_tt_0_lowrmsd_mols_train0_fixed.types data/crossdock2020
python scripts/split_sdf.py data/crossdock2020/it2_tt_0_lowrmsd_mols_test0_fixed.types data/crossdock2020

Run

  • Train GraphBP from scratch:
CUDA_VISIBLE_DEVICES=${you_gpu_id} python main.py

Note: GraphBP can be trained on a 48GB GPU with batchsize=16. Our trained model is avaliable here.

  • Generate atoms in the 3D space with the trained model:
CUDA_VISIBLE_DEVICES=${you_gpu_id} python main_gen.py
  • Postprocess and then save the generated molecules:
CUDA_VISIBLE_DEVICES=${you_gpu_id} python main_eval.py

Reference

@article{liu2022graphbp,
      title={Generating 3D Molecules for Target Protein Binding},
      author={Meng Liu and Youzhi Luo and Kanji Uchino and Koji Maruhashi and Shuiwang Ji},
      journal={arXiv preprint arXiv:2204.09410},
      year={2022},
}
Owner
DIVE Lab, Texas A&M University
DIVE Lab, Texas A&M University
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021