Text-Based Ideal Points

Related tags

Deep Learningtbip
Overview

Text-Based Ideal Points

Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020).

Update (June 29, 2020): We have added interactive visualizations of topics learned by our model.

Update (May 25, 2020): We have added a PyTorch implementation of the text-based ideal point model.

Update (May 11, 2020): See our Colab notebook to run the model online. Our Github code is more complete, and it can be used to reproduce all of our experiments. However, the TBIP is fastest on GPU, so if you do not have access to a GPU you can use Colab's GPUs for free.

Installation for GPU

Configure a virtual environment using Python 3.6+ (instructions here). Inside the virtual environment, use pip to install the required packages:

(venv)$ pip install -r requirements.txt

The main dependencies are Tensorflow (1.14.0) and Tensorflow Probability (0.7.0).

Installation for CPU

To run on CPU, a version of Tensorflow that does not use GPU must be installed. In requirements.txt, comment out the line that says tensorflow-gpu==1.14.0 and uncomment the line that says tensorflow==1.14.0. Note: the script will be noticeably slower on CPU.

Data

Preprocessed Senate speech data for the 114th Congress is included in data/senate-speeches-114. The original data is from [1]. Preprocessed 2020 Democratic presidential candidate tweet data is included in data/candidate-tweets-2020.

To include a customized data set, first create a repo data/{dataset_name}/clean/. The following four files must be inside this folder:

  • counts.npz: a [num_documents, num_words] sparse CSR matrix containing the word counts for each document.
  • author_indices.npy: a [num_documents] vector where each entry is an integer in the set {0, 1, ..., num_authors - 1}, indicating the author of the corresponding document in counts.npz.
  • vocabulary.txt: a [num_words]-length file where each line denotes the corresponding word in the vocabulary.
  • author_map.txt: a [num_authors]-length file where each line denotes the name of an author in the corpus.

See data/senate-speeches-114/clean for an example of what the four files look like for Senate speeches. The script setup/senate_speeches_to_bag_of_words.py contains example code for creating the four files from unprocessed data.

Learning text-based ideal points

Run tbip.py to produce ideal points. For the Senate speech data, use the command:

(venv)$ python tbip.py  --data=senate-speeches-114  --batch_size=512  --max_steps=100000

You can view Tensorboard while training to see summaries of training (including the learned ideal points and ideological topics). To run Tensorboard, use the command:

(venv)$ tensorboard  --logdir=data/senate-speeches-114/tbip-fits/  --port=6006

The command should output a link where you can view the Tensorboard results in real time. The fitted parameters will be stored in data/senate-speeches-114/tbip-fits/params. To perform the above analyses for the 2020 Democratic candidate tweets, replace senate-speeches-114 with candidate-tweets-2020.

To run custom data, we recommend training Poisson factorization before running the TBIP script for best results. If you have custom data stored in data/{dataset_name}/clean/, you can run

(venv)$ python setup/poisson_factorization.py  --data={dataset_name}

The default number of topics is 50. To use a different number of topics, e.g. 100, use the flag --num_topics=100. After Poisson factorization finishes, use the following command to run the TBIP:

(venv)$ python tbip.py  --data={dataset_name}

You can adjust the batch size, learning rate, number of topics, and number of steps by using the flags --batch_size, --learning_rate, --num_topics, and --max_steps, respectively. To run the TBIP without initializing from Poisson factorization, use the flag --pre_initialize_parameters=False. To view the results in Tensorboard, run

(venv)$ tensorboard  --logdir=data/{dataset_name}/tbip-fits/  --port=6006

Again, the learned parameters will be stored in data/{dataset_name}/tbip-fits/params.

Reproducing Paper Results

NOTE: Since the publication of our paper, we have made small changes to the code that have sped up inference. A byproduct of these changes is that the Tensorflow graph has changed, so its random seed does not produce the same results as before the changes, even though the data, model, and inference are all the same. To reproduce the exact paper results, one must git checkout to a version of our repository from before these changes:

(venv)$ git checkout 31d161e

The commands below will reproduce all of the paper results. The following data is required before running the commands:

  • Senate votes: The original raw data can be found at [2]. The paper includes experiments for Senate sessions 111-114. For each Senate session, we need three files: one for votes, one for members, and one for rollcalls. For example, for Senate session 114, we would use the files: S114_votes.csv, S114_members.csv, S114_rollcalls.csv. Make a repo data/senate-votes and store these three files in data/senate-votes/114/raw/. Repeat for Senate sessions 111-113.
  • Senate speeches: The original raw data can be found at [1]. Specifically, we use the hein-daily data for the 114th Senate session. The files needed are speeches_114.txt, descr_114.txt, and 114_SpeakerMap.txt. Make sure the relevant files are stored in data/senate-speeches-114/raw/.
  • Senator tweets: The data was provided to us by Voxgov [3].
  • Senate speech comparisons: We use a separate data set for the Senate speech comparisons because speech debates must be labeled for Wordshoal. The raw data can be found at [4]. The paper includes experiments for Senate sessions 111-113. We need the files speaker_senator_link_file.csv, speeches_Senate_111.tab, speeches_Senate_112.tab, and speeches_Senate_113.tab. These files should all be stored in data/senate-speech-comparisons/raw/.
  • Democratic presidential candidate tweets: Download the raw tweets here and store tweets.csv in the folder data/candidate-tweets-2020/raw/.

Preprocess, run vote ideal point model, and perform analysis for Senate votes

(venv)$ python setup/preprocess_senate_votes.py  --senate_session=111
(venv)$ python setup/preprocess_senate_votes.py  --senate_session=112
(venv)$ python setup/preprocess_senate_votes.py  --senate_session=113
(venv)$ python setup/preprocess_senate_votes.py  --senate_session=114
(venv)$ python setup/vote_ideal_points.py  --senate_session=111
(venv)$ python setup/vote_ideal_points.py  --senate_session=112
(venv)$ python setup/vote_ideal_points.py  --senate_session=113
(venv)$ python setup/vote_ideal_points.py  --senate_session=114
(venv)$ python analysis/analyze_vote_ideal_points.py

Preprocess, run the TBIP, and perform analysis for Senate speeches for the 114th Senate

(venv)$ python setup/senate_speeches_to_bag_of_words.py
(venv)$ python setup/poisson_factorization.py  --data=senate-speeches-114
(venv)$ python tbip.py  --data=senate-speeches-114  --counts_transformation=log  --batch_size=512  --max_steps=150000
(venv)$ python analysis/analyze_senate_speeches.py

Preprocess, run the TBIP and Wordfish, and perform analysis for tweets from senators during the 114th Senate

(venv)$ python setup/senate_tweets_to_bag_of_words.py
(venv)$ python setup/poisson_factorization.py  --data=senate-tweets-114
(venv)$ python tbip.py  --data=senate-tweets-114  --batch_size=1024  --max_steps=100000
(venv)$ python model_comparison/wordfish.py  --data=senate-tweets-114  --max_steps=50000
(venv)$ python analysis/analyze_senate_tweets.py

Preprocess and run the TBIP for Senate speech comparisons

(venv)$ python setup/preprocess_senate_speech_comparisons.py  --senate_session=111
(venv)$ python setup/preprocess_senate_speech_comparisons.py  --senate_session=112
(venv)$ python setup/preprocess_senate_speech_comparisons.py  --senate_session=113
(venv)$ python setup/poisson_factorization.py  --data=senate-speech-comparisons  --senate_session=111
(venv)$ python setup/poisson_factorization.py  --data=senate-speech-comparisons  --senate_session=112
(venv)$ python setup/poisson_factorization.py  --data=senate-speech-comparisons  --senate_session=113
(venv)$ python tbip.py  --data=senate-speech-comparisons  --max_steps=200000  --senate_session=111  --batch_size=128
(venv)$ python tbip.py  --data=senate-speech-comparisons  --max_steps=200000  --senate_session=112  --batch_size=128
(venv)$ python tbip.py  --data=senate-speech-comparisons  --max_steps=200000  --senate_session=113  --batch_size=128

Run Wordfish for Senate speech comparisons

(venv)$ python model_comparison/wordfish.py  --data=senate-speech-comparisons  --max_steps=50000  --senate_session=111
(venv)$ python model_comparison/wordfish.py  --data=senate-speech-comparisons  --max_steps=50000  --senate_session=112 
(venv)$ python model_comparison/wordfish.py  --data=senate-speech-comparisons  --max_steps=50000  --senate_session=113

Run Wordshoal for Senate speech comparisons

(venv)$ python model_comparison/wordshoal.py  --data=senate-speech-comparisons  --max_steps=30000  --senate_session=111  --batch_size=1024
(venv)$ python model_comparison/wordshoal.py  --data=senate-speech-comparisons  --max_steps=30000  --senate_session=112  --batch_size=1024
(venv)$ python model_comparison/wordshoal.py  --data=senate-speech-comparisons  --max_steps=30000  --senate_session=113  --batch_size=1024

Analyze results for Senate speech comparisons

(venv)$ python analysis/compare_tbip_wordfish_wordshoal.py

Preprocess, run the TBIP, and perform analysis for Democratic candidate tweets

(venv)$ python setup/candidate_tweets_to_bag_of_words.py
(venv)$ python setup/poisson_factorization.py  --data=candidate-tweets-2020
(venv)$ python tbip.py  --data=candidate-tweets-2020  --batch_size=1024  --max_steps=100000
(venv)$ python analysis/analyze_candidate_tweets.py

Make figures

(venv)$ python analysis/make_figures.py

References

[1] Matthew Gentzkow, Jesse M. Shapiro, and Matt Taddy. Congressional Record for the 43rd-114th Congresses: Parsed Speeches and Phrase Counts. Palo Alto, CA: Stanford Libraries [distributor], 2018-01-16. https://data.stanford.edu/congress_text

[2] Jeffrey B. Lewis, Keith Poole, Howard Rosenthal, Adam Boche, Aaron Rudkin, and Luke Sonnet (2020). Voteview: Congressional Roll-Call Votes Database. https://voteview.com/

[3] VoxGovFEDERAL, U.S. Senators tweets from the 114th Congress. 2020. https://voxgov.com

[4] Benjamin E. Lauderdale and Alexander Herzog. Replication Data for: Measuring Political Positions from Legislative Speech. In Harvard Dataverse, 2016. https://doi.org/10.7910/DVN/RQMIV3

Owner
Keyon Vafa
Keyon Vafa
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

OrienMask This repository implements the framework OrienMask for real-time instance segmentation. It achieves 34.8 mask AP on COCO test-dev at the spe

45 Dec 13, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
Convert openmmlab (not only mmdetection) series model to tensorrt

MMDet to TensorRT This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is exp

JinTian 4 Dec 17, 2021
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022