This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

Overview

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation

This repo is the official implementation of "DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation". [Paper] [Project]

Update

  • Clean version is released! It currently includes code, data, log and models for the following tasks:
  • 2D human pose estimation
  • 3D human pose estimation
  • Body recovery via a SMPL model

TODO

  • Provide different sample interval checkpoints/logs
  • Add DeciWatch in MMHuman3D

Description

This paper proposes a simple baseline framework for video-based 2D/3D human pose estimation that can achieve 10 times efficiency improvement over existing works without any performance degradation, named DeciWatch. Unlike current solutions that estimate each frame in a video, DeciWatch introduces a simple yet effective sample-denoise-recover framework that only watches sparsely sampled frames, taking advantage of the continuity of human motions and the lightweight pose representation. Specifically, DeciWatch uniformly samples less than 10% video frames for detailed estimation, denoises the estimated 2D/3D poses with an efficient Transformer architecture, and then accurately recovers the rest of the frames using another Transformer-based network. Comprehensive experimental results on three video-based human pose estimation, body mesh recovery tasks and efficient labeling in videos with four datasets validate the efficiency and effectiveness of DeciWatch.

Getting Started

Environment Requirement

DeciWatch has been implemented and tested on Pytorch 1.10.1 with python >= 3.6. It supports both GPU and CPU inference.

Clone the repo:

git clone https://github.com/cure-lab/DeciWatch.git

We recommend you install the requirements using conda:

# conda
source scripts/install_conda.sh

Prepare Data

All the data used in our experiment can be downloaded here.

Google Drive

Baidu Netdisk

Valid data includes:

Dataset Pose Estimator 3D Pose 2D Pose SMPL
Sub-JHMDB SimplePose
3DPW EFT
3DPW PARE
3DPW SPIN
Human3.6M FCN
AIST++ SPIN

Please refer to doc/data.md for detailed data information and data preparing.

Training

Run the commands below to start training:

python train.py --cfg [config file] --dataset_name [dataset name] --estimator [backbone estimator you use] --body_representation [smpl/3D/2D] --sample_interval [sample interval N]

For example, you can train on 3D representation of 3DPW using backbone estimator SPIN with sample interval 10 by:

python train.py --cfg configs/config_pw3d_spin.yaml --dataset_name pw3d --estimator spin --body_representation 3D --sample_interval 10

Note that the training and testing datasets should be downloaded and prepared before training.

You may refer to doc/training.md for more training details.

Evaluation

Results on 2D Pose

Dataset Estimator PCK 0.05 (INPUT/OUTPUT) PCK 0.1 (INPUT/OUTPUT) PCK 0.2 (INPUT/OUTPUT) Download
Sub-JHMDB simplepose 57.30%/79.32% 81.61%/94.27% 93.94%/98.85% Baidu Netdisk / Google Drive

Results on 3D Pose

Dataset Estimator MPJPE (INPUT/OUTPUT) Accel (INPUT/OUTPUT) Download
3DPW SPIN 96.92/93.34 34.68/7.06 Baidu Netdisk / Google Drive
3DPW EFT 90.34/89.02 32.83/6.84 Baidu Netdisk / Google Drive
3DPW PARE 78.98/77.16 25.75/6.90 Baidu Netdisk / Google Drive
AIST++ SPIN 107.26/71.27 33.37/5.68 Baidu Netdisk / Google Drive
Human3.6M FCN 54.56/52.83 19.18/1.47 Baidu Netdisk / Google Drive

Results on SMPL

Dataset Estimator MPJPE (INPUT/OUTPUT) Accel (INPUT/OUTPUT) MPVPE (INPUT/OUTPUT) Download
3DPW SPIN 100.13/97.53 35.53/8.38 114.39/112.84 Baidu Netdisk / Google Drive
3DPW EFT 91.60/92.56 33.57/8.7 5 110.34/109.27 Baidu Netdisk / Google Drive
3DPW PARE 80.44/81.76 26.77/7.24 94.88/95.68 Baidu Netdisk / Google Drive
AIST++ SPIN 108.25/82.10 33.83/7.27 137.51/106.08 Baidu Netdisk / Google Drive

Noted that although our main contribution is the efficiency improvement, using DeciWatch as post processing is also helpful for accuracy and smoothness improvement.

You may refer to doc/evaluate.md for evaluate details.

Quick Demo

Run the commands below to visualize demo:

python demo.py --cfg [config file] --dataset_name [dataset name] --estimator [backbone estimator you use] --body_representation [smpl/3D/2D] --sample_interval [sample interval N]

You are supposed to put corresponding images with the data structure:

|-- data
    |-- videos
        |-- pw3d 
            |-- downtown_enterShop_00
                |-- image_00000.jpg
                |-- ...
            |-- ...
        |-- jhmdb
            |-- catch
            |-- ...
        |-- aist
            |-- gWA_sFM_c01_d27_mWA2_ch21.mp4
            |-- ...
        |-- ...

For example, you can train on 3D representation of 3DPW using backbone estimator SPIN with sample interval 10 by:

python demo.py --cfg configs/config_pw3d_spin.yaml --dataset_name pw3d --estimator spin --body_representation 3D --sample_interval 10

Please refer to the dataset website for the raw images. You may change the config in lib/core/config.py for different visualization parameters.

You may refer to doc/visualize.md for visualization details.

Citing DeciWatch

If you find this repository useful for your work, please consider citing it as follows:

@article{zeng2022deciwatch,
  title={DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation},
  author={Zeng, Ailing and Ju, Xuan and Yang, Lei and Gao, Ruiyuan and Zhu, Xizhou and Dai, Bo and Xu, Qiang},
  journal={arXiv preprint arXiv:2203.08713},
  year={2022}
}

Please remember to cite all the datasets and backbone estimators if you use them in your experiments.

Acknowledgement

Many thanks to Xuan Ju for her great efforts to clean almost the original code!!!

License

This code is available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using this code you agree to the terms in the LICENSE. Third-party datasets and software are subject to their respective licenses.

Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023