This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

Overview

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation

This repo is the official implementation of "DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation". [Paper] [Project]

Update

  • Clean version is released! It currently includes code, data, log and models for the following tasks:
  • 2D human pose estimation
  • 3D human pose estimation
  • Body recovery via a SMPL model

TODO

  • Provide different sample interval checkpoints/logs
  • Add DeciWatch in MMHuman3D

Description

This paper proposes a simple baseline framework for video-based 2D/3D human pose estimation that can achieve 10 times efficiency improvement over existing works without any performance degradation, named DeciWatch. Unlike current solutions that estimate each frame in a video, DeciWatch introduces a simple yet effective sample-denoise-recover framework that only watches sparsely sampled frames, taking advantage of the continuity of human motions and the lightweight pose representation. Specifically, DeciWatch uniformly samples less than 10% video frames for detailed estimation, denoises the estimated 2D/3D poses with an efficient Transformer architecture, and then accurately recovers the rest of the frames using another Transformer-based network. Comprehensive experimental results on three video-based human pose estimation, body mesh recovery tasks and efficient labeling in videos with four datasets validate the efficiency and effectiveness of DeciWatch.

Getting Started

Environment Requirement

DeciWatch has been implemented and tested on Pytorch 1.10.1 with python >= 3.6. It supports both GPU and CPU inference.

Clone the repo:

git clone https://github.com/cure-lab/DeciWatch.git

We recommend you install the requirements using conda:

# conda
source scripts/install_conda.sh

Prepare Data

All the data used in our experiment can be downloaded here.

Google Drive

Baidu Netdisk

Valid data includes:

Dataset Pose Estimator 3D Pose 2D Pose SMPL
Sub-JHMDB SimplePose
3DPW EFT
3DPW PARE
3DPW SPIN
Human3.6M FCN
AIST++ SPIN

Please refer to doc/data.md for detailed data information and data preparing.

Training

Run the commands below to start training:

python train.py --cfg [config file] --dataset_name [dataset name] --estimator [backbone estimator you use] --body_representation [smpl/3D/2D] --sample_interval [sample interval N]

For example, you can train on 3D representation of 3DPW using backbone estimator SPIN with sample interval 10 by:

python train.py --cfg configs/config_pw3d_spin.yaml --dataset_name pw3d --estimator spin --body_representation 3D --sample_interval 10

Note that the training and testing datasets should be downloaded and prepared before training.

You may refer to doc/training.md for more training details.

Evaluation

Results on 2D Pose

Dataset Estimator PCK 0.05 (INPUT/OUTPUT) PCK 0.1 (INPUT/OUTPUT) PCK 0.2 (INPUT/OUTPUT) Download
Sub-JHMDB simplepose 57.30%/79.32% 81.61%/94.27% 93.94%/98.85% Baidu Netdisk / Google Drive

Results on 3D Pose

Dataset Estimator MPJPE (INPUT/OUTPUT) Accel (INPUT/OUTPUT) Download
3DPW SPIN 96.92/93.34 34.68/7.06 Baidu Netdisk / Google Drive
3DPW EFT 90.34/89.02 32.83/6.84 Baidu Netdisk / Google Drive
3DPW PARE 78.98/77.16 25.75/6.90 Baidu Netdisk / Google Drive
AIST++ SPIN 107.26/71.27 33.37/5.68 Baidu Netdisk / Google Drive
Human3.6M FCN 54.56/52.83 19.18/1.47 Baidu Netdisk / Google Drive

Results on SMPL

Dataset Estimator MPJPE (INPUT/OUTPUT) Accel (INPUT/OUTPUT) MPVPE (INPUT/OUTPUT) Download
3DPW SPIN 100.13/97.53 35.53/8.38 114.39/112.84 Baidu Netdisk / Google Drive
3DPW EFT 91.60/92.56 33.57/8.7 5 110.34/109.27 Baidu Netdisk / Google Drive
3DPW PARE 80.44/81.76 26.77/7.24 94.88/95.68 Baidu Netdisk / Google Drive
AIST++ SPIN 108.25/82.10 33.83/7.27 137.51/106.08 Baidu Netdisk / Google Drive

Noted that although our main contribution is the efficiency improvement, using DeciWatch as post processing is also helpful for accuracy and smoothness improvement.

You may refer to doc/evaluate.md for evaluate details.

Quick Demo

Run the commands below to visualize demo:

python demo.py --cfg [config file] --dataset_name [dataset name] --estimator [backbone estimator you use] --body_representation [smpl/3D/2D] --sample_interval [sample interval N]

You are supposed to put corresponding images with the data structure:

|-- data
    |-- videos
        |-- pw3d 
            |-- downtown_enterShop_00
                |-- image_00000.jpg
                |-- ...
            |-- ...
        |-- jhmdb
            |-- catch
            |-- ...
        |-- aist
            |-- gWA_sFM_c01_d27_mWA2_ch21.mp4
            |-- ...
        |-- ...

For example, you can train on 3D representation of 3DPW using backbone estimator SPIN with sample interval 10 by:

python demo.py --cfg configs/config_pw3d_spin.yaml --dataset_name pw3d --estimator spin --body_representation 3D --sample_interval 10

Please refer to the dataset website for the raw images. You may change the config in lib/core/config.py for different visualization parameters.

You may refer to doc/visualize.md for visualization details.

Citing DeciWatch

If you find this repository useful for your work, please consider citing it as follows:

@article{zeng2022deciwatch,
  title={DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation},
  author={Zeng, Ailing and Ju, Xuan and Yang, Lei and Gao, Ruiyuan and Zhu, Xizhou and Dai, Bo and Xu, Qiang},
  journal={arXiv preprint arXiv:2203.08713},
  year={2022}
}

Please remember to cite all the datasets and backbone estimators if you use them in your experiments.

Acknowledgement

Many thanks to Xuan Ju for her great efforts to clean almost the original code!!!

License

This code is available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using this code you agree to the terms in the LICENSE. Third-party datasets and software are subject to their respective licenses.

Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
ECAENet (TensorFlow and Keras)

ECAENet: EfficientNet with Efficient Channel Attention for Plant Species Recognition (SCI:Q3) (Journal of Intelligent & Fuzzy Systems)

4 Dec 22, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.

SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu

Phil Wang 207 Dec 23, 2022
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023