Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Overview

Angora

License Build Status

Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Published Work

Arxiv: Angora: Efficient Fuzzing by Principled Search, S&P 2018.

Building Angora

Build Requirements

  • Linux-amd64 (Tested on Ubuntu 16.04/18.04 and Debian Buster)
  • Rust stable (>= 1.31), can be obtained using rustup
  • LLVM 4.0.0 - 7.1.0 : run PREFIX=/path-to-install ./build/install_llvm.sh.

Environment Variables

Append the following entries in the shell configuration file (~/.bashrc, ~/.zshrc).

export PATH=/path-to-clang/bin:$PATH
export LD_LIBRARY_PATH=/path-to-clang/lib:$LD_LIBRARY_PATH

Fuzzer Compilation

The build script will resolve most dependencies and setup the runtime environment.

./build/build.sh

System Configuration

As with AFL, system core dumps must be disabled.

echo core | sudo tee /proc/sys/kernel/core_pattern

Test

Test if Angora is builded successfully.

cd /path-to-angora/tests
./test.sh mini

Running Angora

Build Target Program

Angora compiles the program into two separate binaries, each with their respective instrumentation. Using autoconf programs as an example, here are the steps required.

# Use the instrumenting compilers
CC=/path/to/angora/bin/angora-clang \
CXX=/path/to/angora/bin/angora-clang++ \
LD=/path/to/angora/bin/angora-clang \
PREFIX=/path/to/target/directory \
./configure --disable-shared

# Build with taint tracking support 
USE_TRACK=1 make -j
make install

# Save the compiled target binary into a new directory
# and rename it with .taint postfix, such as uniq.taint

# Build with light instrumentation support
make clean
USE_FAST=1 make -j
make install

# Save the compiled binary into the directory previously
# created and rename it with .fast postfix, such as uniq.fast

If you fail to build by this approach, try wllvm and gllvm described in Build a target program.

Also, we have implemented taint analysis with libdft64 instead of DFSan (Use libdft64 for taint tracking).

Fuzzing

./angora_fuzzer -i input -o output -t path/to/taint/program -- path/to/fast/program [argv]

For more information, please refer to the documentation under the docs/ directory.

Comments
  • Unable to compile lavam programs correctly

    Unable to compile lavam programs correctly

    Hello Angora authors,

    I'm trying to reproduce the lavam evaluation within Magma's infrastructure. However, I think I encounter the following 2 issues. Could you help me to check if I'm doing anything wrong?

    Thank you in advance!

    The 2 issues are as follow:

    1. Angora cannot find any bugs while AFLplusplus can easily discover ones within a few minutes. From the log files I see that Angora is saying Multiple inconsistent warnings. It caused by the fast and track programs has different behaviors. If most constraints are inconsistent, ensure they are compiled with the same environment. Otherwise, please report us.
    2. For who, AFLplusplus can only find <20 bugs after running for 5 hours. For other targets it is finding the numbers of bugs reported in your paper.

    You can find the scripts I use to compile and run the fuzzing campaigns here. Basically, the lavam programs are compiled with fuzzers/aflplusplus/instrument.sh and fuzzers/angora/instrument.sh, which they set up some config and execute targets/lavam/build.sh.
    In targets/lavam/LAVAM you can find the patched source code following your instructions.

    To launch the fuzzing campaigns, cd into tools/captain and run ./run.sh run_lavamrc.
    run_lavamrc is the config file for the campaign. It would create a working directory in ~/lavam-results, build docker containers and start fuzzing with fuzzers/aflplusplus/run.sh and fuzzers/angora/run.sh. The fuzzing results are stored in ~/lavam-results/ar as tarballs.

    Please do let me know if you need any additional information.

    Spencer

    opened by spencerwuwu 1
  • Fix up compiler warnings

    Fix up compiler warnings

    • Correct signedness for c-strings in angora-clang
    • Const-correctness throughout
    • Move #[link] attribute to extern block

    Fixes all warnings emitted by clang version 14.

    opened by bossmc 0
  • Upgrade to GitHub-native Dependabot

    Upgrade to GitHub-native Dependabot

    Dependabot Preview will be shut down on August 3rd, 2021. In order to keep getting Dependabot updates, please merge this PR and migrate to GitHub-native Dependabot before then.

    Dependabot has been fully integrated into GitHub, so you no longer have to install and manage a separate app. This pull request migrates your configuration from Dependabot.com to a config file, using the new syntax. When merged, we'll swap out dependabot-preview (me) for a new dependabot app, and you'll be all set!

    With this change, you'll now use the Dependabot page in GitHub, rather than the Dependabot dashboard, to monitor your version updates, and you'll configure Dependabot through the new config file rather than a UI.

    If you've got any questions or feedback for us, please let us know by creating an issue in the dependabot/dependabot-core repository.

    Learn more about migrating to GitHub-native Dependabot

    Please note that regular @dependabot commands do not work on this pull request.

    dependencies 
    opened by dependabot-preview[bot] 1
  • Angora compile IR

    Angora compile IR

    Would Angora have support to compile from LLVM or BAP derived intermediate representation?

    Trying to analyze binary (pre-compiled) but couldn't figure out how:

     INFO  angora::fuzz_main > CommandOpt { mode: LLVM, id: 0, main: ("/input/azorult2", []), track: ("/input/azorult2", []), tmp_dir: "./output/bar/tmp", out_file: "./output/bar/tmp/cur_input", forksrv_socket_path: "./output/bar/tmp/forksrv_socket", track_path: "./output/bar/tmp/track", is_stdin: true, search_method: Gd, mem_limit: 200, time_limit: 1, is_raw: true, uses_asan: false, ld_library: "$LD_LIBRARY_PATH:/clang+llvm/lib", enable_afl: true, enable_exploitation: true }
    thread 'main' panicked at 'The program is not complied by Angora', fuzzer/src/check_dep.rs:55:9
    
    opened by aug2uag 1
  • Update rand requirement from 0.7 to 0.8

    Update rand requirement from 0.7 to 0.8

    Updates the requirements on rand to permit the latest version.

    Changelog

    Sourced from rand's changelog.

    [0.8.0] - 2020-12-18

    Platform support

    • The minimum supported Rust version is now 1.36 (#1011)
    • getrandom updated to v0.2 (#1041)
    • Remove wasm-bindgen and stdweb feature flags. For details of WASM support, see the getrandom documentation. (#948)
    • ReadRng::next_u32 and next_u64 now use little-Endian conversion instead of native-Endian, affecting results on Big-Endian platforms (#1061)
    • The nightly feature no longer implies the simd_support feature (#1048)
    • Fix simd_support feature to work on current nightlies (#1056)

    Rngs

    • ThreadRng is no longer Copy to enable safe usage within thread-local destructors (#1035)
    • gen_range(a, b) was replaced with gen_range(a..b). gen_range(a..=b) is also supported. Note that a and b can no longer be references or SIMD types. (#744, #1003)
    • Replace AsByteSliceMut with Fill and add support for [bool], [char], [f32], [f64] (#940)
    • Restrict rand::rngs::adapter to std (#1027; see also #928)
    • StdRng: add new std_rng feature flag (enabled by default, but might need to be used if disabling default crate features) (#948)
    • StdRng: Switch from ChaCha20 to ChaCha12 for better performance (#1028)
    • SmallRng: Replace PCG algorithm with xoshiro{128,256}++ (#1038)

    Sequences

    • Add IteratorRandom::choose_stable as an alternative to choose which does not depend on size hints (#1057)
    • Improve accuracy and performance of IteratorRandom::choose (#1059)
    • Implement IntoIterator for IndexVec, replacing the into_iter method (#1007)
    • Add value stability tests for seq module (#933)

    Misc

    • Support PartialEq and Eq for StdRng, SmallRng and StepRng (#979)
    • Added a serde1 feature and added Serialize/Deserialize to UniformInt and WeightedIndex (#974)
    • Drop some unsafe code (#962, #963, #1011)
    • Reduce packaged crate size (#983)
    • Migrate to GitHub Actions from Travis+AppVeyor (#1073)

    Distributions

    • Alphanumeric samples bytes instead of chars (#935)
    • Uniform now supports char, enabling rng.gen_range('A'..='Z') (#1068)
    • Add UniformSampler::sample_single_inclusive (#1003)

    Weighted sampling

    • Implement weighted sampling without replacement (#976, #1013)
    • rand::distributions::alias_method::WeightedIndex was moved to rand_distr::WeightedAliasIndex. The simpler alternative rand::distribution::WeightedIndex remains. (#945)
    • Improve treatment of rounding errors in WeightedIndex::update_weights (#956)
    • WeightedIndex: return error on NaN instead of panic (#1005)

    Documentation

    • Document types supported by random (#994)
    Commits

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language
    • @dependabot badge me will comment on this PR with code to add a "Dependabot enabled" badge to your readme

    Additionally, you can set the following in your Dependabot dashboard:

    • Update frequency (including time of day and day of week)
    • Pull request limits (per update run and/or open at any time)
    • Automerge options (never/patch/minor, and dev/runtime dependencies)
    • Out-of-range updates (receive only lockfile updates, if desired)
    • Security updates (receive only security updates, if desired)
    dependencies 
    opened by dependabot-preview[bot] 0
  • showmap: added tool for displaying coverage data

    showmap: added tool for displaying coverage data

    Analogous to afl-showmap. Logs code coverage information to a file (in the same format as afl-showmap).

    This is my first time writing Rust, so I hope that it's okay!

    opened by adrianherrera 0
Releases(1.3.0)
  • 1.3.0(Apr 13, 2022)

    • Support LLVM 11/12
    • Tested in Rust 1.6.*, and Ubuntu 20.04
    • Fix issues
      • getc model
      • https://github.com/AngoraFuzzer/Angora/commit/b31af93bb7401a296af0ddaa7b80eaaed7f73415
      • https://github.com/AngoraFuzzer/Angora/issues/86
    • New PRs
    Source code(tar.gz)
    Source code(zip)
  • 1.2.2(Jul 17, 2019)

    • Implementation of Never-zero counter: The idea is from Marc and Heiko in AFLPlusPlus . https://github.com/vanhauser-thc/AFLplusplus/blob/master/llvm_mode/README.neverzero

    • add inst_ratio : issue #67

    • fix asan compatible: did not instrument function startswith "asan.module"

    Source code(tar.gz)
    Source code(zip)
  • 1.2.1(Jun 14, 2019)

  • 1.2.0(May 23, 2019)

Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Jack Turner 12 Nov 05, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022