An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Overview

Federated Averaging (FedAvg) in PyTorch arXiv

An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-Efficient Learning of Deep Networks from Decentralized Data in PyTorch. (implemented in Python 3.9.2.)

Implementation points

  • Exactly implement the models ('2NN' and 'CNN' mentioned in the paper) to have the same number of parameters written in the paper.
    • 2NN: TwoNN class in models.py; 199,210 parameters
    • CNN: CNN class in models.py; 1,663,370 parameters
  • Exactly implement the non-IID data split.
    • Each client has at least two digits in case of using MNIST dataset.
  • Implement multiprocessing of client update and client evaluation.
  • Support TensorBoard for log tracking.

Requirements

  • See requirements.txt

Configurations

  • See config.yaml

Run

  • python3 main.py

Results

MNIST

  • Number of clients: 100 (K = 100)
  • Fraction of sampled clients: 0.1 (C = 0.1)
  • Number of rounds: 500 (R = 500)
  • Number of local epochs: 10 (E = 10)
  • Batch size: 10 (B = 10)
  • Optimizer: torch.optim.SGD
  • Criterion: torch.nn.CrossEntropyLoss
  • Learning rate: 0.01
  • Momentum: 0.9
  • Initialization: Xavier

Table 1. Final accuracy and the best accuracy

Model Final Accuracy(IID) (Round) Best Accuracy(IID) (Round) Final Accuracy(non-IID) (Round) Best Accuracy(non-IID) (Round)
2NN 98.38% (500) 98.45% (483) 97.50% (500) 97.65% (475)
CNN 99.31% (500) 99.34% (197) 98.73% (500) 99.28% (493)

Table 2. Final loss and the least loss

Model Final Loss(IID) (Round) Least Loss(IID) (Round) Final Loss(non-IID) (Round) Least Loss(non-IID) (Round)
2NN 0.09296 (500) 0.06956 (107) 0.09075 (500) 0.08257 (475)
CNN 0.04781 (500) 0.02497 (86) 0.04533 (500) 0.02413 (366)

Figure 1. MNIST 2NN model accuracy (IID: top / non-IID: bottom) iidmnist run-Accuracy_ MNIST _TwoNN C_0 1, E_10, B_10, IID_False-tag-Accuracy

Figure 2. MNIST CNN model accuracy (IID: top / non-IID: bottom) run-Accuracy_ MNIST _CNN C_0 1, E_10, B_10, IID_True-tag-Accuracy Accuracy

TODO

  • Do CIFAR experiment (CIFAR10 dataset) & large-scale LSTM experiment (Shakespeare dataset)
  • Learning rate scheduling
  • More experiments with other hyperparameter settings (e.g., different combinations of B, E, K, and C)
Owner
Seok-Ju Hahn
atta-dipa dhamma-dipa
Seok-Ju Hahn
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
NumPy로 구현한 딥러닝 라이브러리입니다. (자동 미분 지원)

Deep Learning Library only using NumPy 본 레포지토리는 NumPy 만으로 구현한 딥러닝 라이브러리입니다. 자동 미분이 구현되어 있습니다. 자동 미분 자동 미분은 미분을 자동으로 계산해주는 기능입니다. 아래 코드는 자동 미분을 활용해 역전파

조준희 17 Aug 16, 2022
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022