Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

Overview

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras

Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021) [Paper] [Video].

In this repository, we provide instructions for downloading N-ImageNet along with the implementation of the baseline models presented in the paper. If you have any questions regarding the dataset or the baseline implementations, please leave an issue or contact [email protected].

Downloading N-ImageNet

To download N-ImageNet, please fill out the following questionaire, and we will send guidelines for downloading the data via email: [Link].

Training / Evaluating Baseline Models

Installation

The codebase is tested on a Ubuntu 18.04 machine with CUDA 10.1. However, it may work with other configurations as well. First, create and activate a conda environment with the following command.

conda env create -f environment.yml
conda activate e2t

In addition, you must install pytorch_scatter. Follow the instructions provided in the pytorch_scatter github repo. You need to install the version for torch 1.7.1 and CUDA 10.1.

Dataset Setup

Before you move on to the next step, please download N-ImageNet. Once you download N-ImageNet, you will spot a structure as follows.

N_Imagenet
├── train_list.txt
├── val_list.txt
├── extracted_train (train split)
│   ├── nXXXXXXXX (label)
│   │   ├── XXXXX.npz (event data)
│   │   │
│   │   ⋮
│   │   │
│   │   └── YYYYY.npz (event data)
└── extracted_val (val split)
    └── nXXXXXXXX (label)
        ├── XXXXX.npz (event data)
        │
        ⋮
        │
        └── YYYYY.npz (event data)

The N-ImageNet variants file (which would be saved as N_Imagenet_cam once downloaded) will have a similar file structure, except that it only contains validation files. The following instruction is based on N-ImageNet, but one can follow a similar step to test with N-ImageNet variants.

First, modify train_list.txt and val_list.txt such that it matches the directory structure of the downloaded data. To illustrate, if you open train_list.txt you will see the following

/home/jhkim/Datasets/N_Imagenet/extracted_train/n01440764/n01440764_10026.npz
⋮
/home/jhkim/Datasets/N_Imagenet/extracted_train/n15075141/n15075141_999.npz

Modify each path within the .txt file so that it accords with the directory in which N-ImageNet is downloaded. For example, if N-ImageNet is located in /home/karina/assets/Datasets/, modify train.txt as follows.

/home/karina/assets/Datasets/N_Imagenet/extracted_train/n01440764/n01440764_10026.npz
⋮
/home/karina/assets/Datasets/N_Imagenet/extracted_train/n15075141/n15075141_999.npz

Once this is done, create a Datasets/ directory within real_cnn_model, and create a symbolic link within Datasets. To illustrate, using the directory structure of the previous example, first use the following command.

cd PATH_TO_REPOSITORY/real_cnn_model
mkdir Datasets; cd Datasets
ln -sf /home/karina/assets/Datasets/N_Imagenet/ ./
ln -sf /home/karina/assets/Datasets/N_Imagenet_cam/ ./  (If you have also downloaded the variants)

Congratulations! Now you can start training/testing models on N-ImageNet.

Training a Model

You can train a model based on the binary event image representation with the following command.

export PYTHONPATH=PATH_TO_REPOSITORY:$PYTHONPATH
cd PATH_TO_REPOSITORY/real_cnn_model
python main.py --config configs/imagenet/cnn_adam_acc_two_channel_big_kernel_random_idx.ini

For the examples below, we assume the PYTHONPATH environment variable is set as above. Also, you can change minor details within the config before training by using the --override flag. For example, if you want to change the batch size use the following command.

python main.py --config configs/imagenet/cnn_adam_acc_two_channel_big_kernel_random_idx.ini --override 'batch_size=8'

Evaluating a Model

Suppose you have a pretrained model saved in PATH_TO_REPOSITORY/real_cnn_model/experiments/best.tar. You evaluate the performance of this model on the N-ImageNet validation split by using the following command.

python main.py --config configs/imagenet/cnn_adam_acc_two_channel_big_kernel_random_idx.ini --override 'load_model=PATH_TO_REPOSITORY/real_cnn_model/experiments/best.tar'

Downloading Pretrained Models

Coming soon!

Owner
Noob grad student
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022