Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

Overview

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras

Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021) [Paper] [Video].

In this repository, we provide instructions for downloading N-ImageNet along with the implementation of the baseline models presented in the paper. If you have any questions regarding the dataset or the baseline implementations, please leave an issue or contact [email protected].

Downloading N-ImageNet

To download N-ImageNet, please fill out the following questionaire, and we will send guidelines for downloading the data via email: [Link].

Training / Evaluating Baseline Models

Installation

The codebase is tested on a Ubuntu 18.04 machine with CUDA 10.1. However, it may work with other configurations as well. First, create and activate a conda environment with the following command.

conda env create -f environment.yml
conda activate e2t

In addition, you must install pytorch_scatter. Follow the instructions provided in the pytorch_scatter github repo. You need to install the version for torch 1.7.1 and CUDA 10.1.

Dataset Setup

Before you move on to the next step, please download N-ImageNet. Once you download N-ImageNet, you will spot a structure as follows.

N_Imagenet
├── train_list.txt
├── val_list.txt
├── extracted_train (train split)
│   ├── nXXXXXXXX (label)
│   │   ├── XXXXX.npz (event data)
│   │   │
│   │   ⋮
│   │   │
│   │   └── YYYYY.npz (event data)
└── extracted_val (val split)
    └── nXXXXXXXX (label)
        ├── XXXXX.npz (event data)
        │
        ⋮
        │
        └── YYYYY.npz (event data)

The N-ImageNet variants file (which would be saved as N_Imagenet_cam once downloaded) will have a similar file structure, except that it only contains validation files. The following instruction is based on N-ImageNet, but one can follow a similar step to test with N-ImageNet variants.

First, modify train_list.txt and val_list.txt such that it matches the directory structure of the downloaded data. To illustrate, if you open train_list.txt you will see the following

/home/jhkim/Datasets/N_Imagenet/extracted_train/n01440764/n01440764_10026.npz
⋮
/home/jhkim/Datasets/N_Imagenet/extracted_train/n15075141/n15075141_999.npz

Modify each path within the .txt file so that it accords with the directory in which N-ImageNet is downloaded. For example, if N-ImageNet is located in /home/karina/assets/Datasets/, modify train.txt as follows.

/home/karina/assets/Datasets/N_Imagenet/extracted_train/n01440764/n01440764_10026.npz
⋮
/home/karina/assets/Datasets/N_Imagenet/extracted_train/n15075141/n15075141_999.npz

Once this is done, create a Datasets/ directory within real_cnn_model, and create a symbolic link within Datasets. To illustrate, using the directory structure of the previous example, first use the following command.

cd PATH_TO_REPOSITORY/real_cnn_model
mkdir Datasets; cd Datasets
ln -sf /home/karina/assets/Datasets/N_Imagenet/ ./
ln -sf /home/karina/assets/Datasets/N_Imagenet_cam/ ./  (If you have also downloaded the variants)

Congratulations! Now you can start training/testing models on N-ImageNet.

Training a Model

You can train a model based on the binary event image representation with the following command.

export PYTHONPATH=PATH_TO_REPOSITORY:$PYTHONPATH
cd PATH_TO_REPOSITORY/real_cnn_model
python main.py --config configs/imagenet/cnn_adam_acc_two_channel_big_kernel_random_idx.ini

For the examples below, we assume the PYTHONPATH environment variable is set as above. Also, you can change minor details within the config before training by using the --override flag. For example, if you want to change the batch size use the following command.

python main.py --config configs/imagenet/cnn_adam_acc_two_channel_big_kernel_random_idx.ini --override 'batch_size=8'

Evaluating a Model

Suppose you have a pretrained model saved in PATH_TO_REPOSITORY/real_cnn_model/experiments/best.tar. You evaluate the performance of this model on the N-ImageNet validation split by using the following command.

python main.py --config configs/imagenet/cnn_adam_acc_two_channel_big_kernel_random_idx.ini --override 'load_model=PATH_TO_REPOSITORY/real_cnn_model/experiments/best.tar'

Downloading Pretrained Models

Coming soon!

Owner
Noob grad student
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

42 Nov 25, 2022
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023