Improving Compound Activity Classification via Deep Transfer and Representation Learning

Overview

Improving Compound Activity Classification via Deep Transfer and Representation Learning

This repository is the official implementation of Improving Compound Activity Classification via Deep Transfer and Representation Learning.

Requirements

Operating systems: Red Hat Enterprise Linux Server 7.9

To install requirements:

pip install -r requirements.txt

Installation guide

Download the code and dataset with the command:

git clone https://github.com/ninglab/TransferAct.git

Data Processing

1. Use provided processed dataset

One can use our provided processed dataset in ./data/pairs/: the dataset of pairs of processed balanced assays $\mathcal{P}$ . Check the details of bioassay selection, processing, and assay pair selection in our paper in Section 5.1.1 and Section 5.1.2, respectively. We provided our dataset of pairs as data/pairs.tar.gz compressed file. Please use tar to de-compress it.

2. Use own dataset

We provide necessary scripts in ./data/scripts/ with the processing steps in ./data/scripts/README.md.

Training

1. Running TAc

  • To run TAc-dmpn,
python code/train_aada.py --source_data_path <source_assay_csv_file> --target_data_path <target_assay_csv_file> --dataset_type classification --extra_metrics prc-auc precision recall accuracy f1_score --hidden_size 25 --depth 4 --init_lr 1e-3 --batch_size 10 --ffn_hidden_size 100 --ffn_num_layers 2 --epochs 40 --alpha 1 --lamda 0 --split_type index_predetermined --crossval_index_file <index_file> --save_dir <chkpt_dir> --class_balance --mpn_shared
  • To run TAc-dmpna, add these arguments to the above command
--attn_dim 100 --aggregation self-attention --model aada_attention

source_data_path and target_data_path specify the path to the source and target assay CSV files of the pair, respectively. First line contains a header smiles,target. Each of the following lines are comma-separated with the SMILES in the 1st column and the 0/1 label in the 2nd column.

dataset_type specifies the type of task; always classification for this project.

extra_metrics specifies the list of evaluation metrics.

hidden_size specifies the dimension of the learned compound representation out of GNN-based feature generators.

depth specifies the number of message passing steps.

init_lr specifies the initial learning rate.

batch_size specifies the batch size.

ffn_hidden_size and ffn_num_layers specify the number of hidden units and layers, respectively, in the fully connected network used as the classifier.

epochs specifies the total number of epochs.

split_type specifies the type of data split.

crossval_index_file specifies the path to the index file which contains the indices of data points for train, validation and test split for each fold.

save_dir specifies the directory where the model, evaluation scores and predictions will be saved.

class_balance indicates whether to use class-balanced batches during training.

model specifies which model to use.

aggregation specifies which pooling mechanism to use to get the compound representation from the atom representations. Default set to mean: the atom-level representations from the message passing network are averaged over all atoms of a compound to yield the compound representation.

attn_dim specifies the dimension of the hidden layer in the 2-layer fully connected network used as the attention network.

Use python code/train_aada.py -h to check the meaning and default values of other parameters.

2. Running TAc-fc variants and ablations

  • To run Tac-fc,
python code/train_aada.py --source_data_path <source_assay_csv_file> --target_data_path <target_assay_csv_file> --dataset_type classification --extra_metrics prc-auc precision recall accuracy f1_score --hidden_size 25 --depth 4 --init_lr 1e-3 --batch_size 10 --ffn_hidden_size 100 --ffn_num_layers 2 --local_discriminator_hidden_size 100 --local_discriminator_num_layers 2 --global_discriminator_hidden_size 100 --global_discriminator_num_layers 2 --epochs 40 --alpha 1 --lamda 1 --split_type index_predetermined --crossval_index_file <index_file> --save_dir <chkpt_dir> --class_balance --mpn_shared
  • To run TAc-fc-dmpna, add these arguments to the above command
--attn_dim 100 --aggregation self-attention --model aada_attention
Ablations
  • To run TAc-f, add --exclude_global to the above command.
  • To run TAc-c, add --exclude_local to the above command.
  • Adding both --exclude_local and --exclude_global is equivalent to running TAc.

3. Running Baselines

DANN

python code/train_aada.py --source_data_path <source_assay_csv_file> --target_data_path <target_assay_csv_file> --dataset_type classification --extra_metrics prc-auc precision recall accuracy f1_score --hidden_size 25 --depth 4 --init_lr 1e-3 --batch_size 10 --ffn_hidden_size 100 --ffn_num_layers 2 --global_discriminator_hidden_size 100 --global_discriminator_num_layers 2 --epochs 40 --alpha 1 --lamda 1 --split_type index_predetermined --crossval_index_file <index_file> --save_dir <chkpt_dir> --class_balance --mpn_shared
  • To run DANN-dmpn, add --model dann to the above command.
  • To run DANN-dmpna, add --model dann_attention --attn_dim 100 --aggregation self-attention --model to the above command.

Run the following baselines from chemprop as follows:

FCN-morgan

python chemprop/train.py --data_path <assay_csv_file> --dataset_type classification --extra_metrics prc-auc precision recall accuracy f1_score --init_lr 1e-3 --batch_size 10 --ffn_hidden_size 100 --ffn_num_layers 2 --epochs 40 --features_generator morgan --features_only --split_type index_predetermined --crossval_index_file <index_file> --save_dir <chkpt_dir> --class_balance

FCN-morganc

python chemprop/train.py --data_path <assay_csv_file> --dataset_type classification --extra_metrics prc-auc precision recall accuracy f1_score --init_lr 1e-3 --batch_size 10 --ffn_hidden_size 100 --ffn_num_layers 2 --epochs 40 --features_generator morgan_count --features_only --split_type index_predetermined --crossval_index_file <index_file> --save_dir <chkpt_dir> --class_balance

FCN-dmpn

python chemprop/train.py --data_path <assay_csv_file> --dataset_type classification --extra_metrics prc-auc precision recall accuracy f1_score --hidden_size 25 --depth 4 --init_lr 1e-3 --batch_size 10 --ffn_hidden_size 100 --ffn_num_layers 2 --epochs 40 --split_type index_predetermined --crossval_index_file <index_file> --save_dir <chkpt_dir> --class_balance

FCN-dmpna

Add the following to the above command:

--model mpnn_attention --attn_dim 100 --aggregation self-attention

For the above baselines, data_path specifies the path to the target assay CSV file.

FCN-dmpn(DT)

python chemprop/train.py --data_path <source_assay_csv_file> --target_data_path <target_assay_csv_file> --dataset_type classification --extra_metrics prc-auc precision recall accuracy f1_score  --hidden_size 25 --depth 4 --init_lr 1e-3 --batch_size 10 --ffn_hidden_size 100 --ffn_num_layers 2 --epochs 40 --split_type index_predetermined --crossval_index_file <index_file> --save_dir <chkpt_dir> --class_balance

FCN-dmpna(DT)

--model mpnn_attention --attn_dim 100 --aggregation self-attention

For FCN-dmpn(DT)and FCN-dmpna(DT), data_path and target_data_path specify the path to the source and target assay CSV files.

Use python chemprop/train.py -h to check the meaning of other parameters.

Testing

  1. To predict the labels of the compounds in the test set for Tac*, DANN methods:

    python code/predict.py --test_path <test_csv_file> --checkpoint_dir <chkpt_dir> --preds_path <pred_file>

    test_path specifies the path to a CSV file containing a list of SMILES and ground-truth labels. First line contains a header smiles,target. Each of the following lines are comma-separated with the SMILES in the 1st column and the 0/1 label in the 2nd column.

    checkpoint_dir specifies the path to the checkpoint directory where the model checkpoint(s) .pt filles are saved (i.e., save_dir during training).

    preds_path specifies the path to a CSV file where the predictions will be saved.

  2. To predict the labels of the compounds in the test set for other methods:

    python chemprop/predict.py --test_path <test_csv_file> --checkpoint_dir <chkpt_dir> --preds_path <pred_file>
    

Compound Prioritization using dmpna:

Please refer to the README.md in the comprank directory.

Owner
NingLab
NingLab
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022