Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

Related tags

Deep LearningTWIST
Overview

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions

Architecture

Codes and pretrained models for TWIST:

@article{wang2021self,
  title={Self-Supervised Learning by Estimating Twin Class Distributions},
  author={Wang, Feng and Kong, Tao and Zhang, Rufeng and Liu, Huaping and Li, Hang},
  journal={arXiv preprint arXiv:2110.07402},
  year={2021}
}

TWIST is a novel self-supervised representation learning method by classifying large-scale unlabeled datasets in an end-to-end way. We employ a siamese network terminated by a softmax operation to produce twin class distributions of two augmented images. Without supervision, we enforce the class distributions of different augmentations to be consistent. In the meantime, we regularize the class distributions to make them sharp and diverse. TWIST can naturally avoid the trivial solutions without specific designs such as asymmetric network, stop-gradient operation, or momentum encoder.

formula

Models and Results

Main Models for Representation Learning

arch params epochs linear download
Model with multi-crop and self-labeling
ResNet-50 24M 850 75.5% backbone only full ckpt args log eval logs
ResNet-50w2 94M 250 77.7% backbone only full ckpt args log eval logs
DeiT-S 21M 300 75.6% backbone only full ckpt args log eval logs
ViT-B 86M 300 77.3% backbone only full ckpt args log eval logs
Model without multi-crop and self-labeling
ResNet-50 24M 800 72.6% backbone only full ckpt args log eval logs

Model for unsupervised classification

arch params epochs NMI AMI ARI ACC download
ResNet-50 24M 800 74.4 57.7 30.1 40.5 backbone only full ckpt args log
Top-3 predictions for unsupervised classification

Top-3

Semi-Supervised Results

arch 1% labels 10% labels 100% labels
resnet-50 61.5% 71.7% 78.4%
resnet-50w2 67.2% 75.3% 80.3%

Detection Results

Task AP all AP 50 AP 75
VOC07+12 detection 58.1 84.2 65.4
COCO detection 41.9 62.6 45.7
COCO instance segmentation 37.9 59.7 40.6

Single-node Training

ResNet-50 (requires 8 GPUs, Top-1 Linear 72.6%)

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env train.py \
  --data-path ${DATAPATH} \
  --output_dir ${OUTPUT} \
  --aug barlow \
  --batch-size 256 \
  --dim 32768 \
  --epochs 800 

Multi-node Training

ResNet-50 (requires 16 GPUs spliting over 2 nodes for multi-crop training, Top-1 Linear 75.5%)

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env \
  --nnodes=${WORKER_NUM} \
  --node_rank=${MACHINE_ID} \
  --master_addr=${HOST} \
  --master_port=${PORT} train.py \
  --data-path ${DATAPATH} \
  --output_dir ${OUTPUT}

ResNet-50w2 (requires 32 GPUs spliting over 4 nodes for multi-crop training, Top-1 Linear 77.7%)

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env \
  --nnodes=${WORKER_NUM} \
  --node_rank=${MACHINE_ID} \
  --master_addr=${HOST} \
  --master_port=${PORT} train.py \
  --data-path ${DATAPATH} \
  --output_dir ${OUTPUT} \
  --backbone 'resnet50w2' \
  --batch-size 60 \
  --bunch-size 240 \
  --epochs 250 \
  --mme_epochs 200 

DeiT-S (requires 16 GPUs spliting over 2 nodes for multi-crop training, Top-1 Linear 75.6%)

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env \
  --nnodes=${WORKER_NUM} \
  --node_rank=${MACHINE_ID} \
  --master_addr=${HOST} \
  --master_port=${PORT} train.py \
  --data-path ${DATAPATH} \
  --output_dir ${OUTPUT} \
  --backbone 'vit_s' \
  --batch-size 128 \
  --bunch-size 256 \
  --clip_norm 3.0 \
  --epochs 300 \
  --mme_epochs 300 \
  --lam1 -0.6 \
  --lam2 1.0 \
  --local_crops_number 6 \
  --lr 0.0005 \
  --momentum_start 0.996 \
  --momentum_end 1.0 \
  --optim admw \
  --use_momentum_encoder 1 \
  --weight_decay 0.06 \
  --weight_decay_end 0.06 

ViT-B (requires 32 GPUs spliting over 4 nodes for multi-crop training, Top-1 Linear 77.3%)

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env \
  --nnodes=${WORKER_NUM} \
  --node_rank=${MACHINE_ID} \
  --master_addr=${HOST} \
  --master_port=${PORT} train.py \
  --data-path ${DATAPATH} \
  --output_dir ${OUTPUT} \
  --backbone 'vit_b' \
  --batch-size 64 \
  --bunch-size 256 \
  --clip_norm 3.0 \
  --epochs 300 \
  --mme_epochs 300 \
  --lam1 -0.6 \
  --lam2 1.0 \
  --local_crops_number 6 \
  --lr 0.00075 \
  --momentum_start 0.996 \
  --momentum_end 1.0 \
  --optim admw \
  --use_momentum_encoder 1 \
  --weight_decay 0.06 \
  --weight_decay_end 0.06 

Linear Classification

For ResNet-50

python3 evaluate.py \
  ${DATAPATH} \
  ${OUTPUT}/checkpoint.pth \
  --weight-decay 0 \
  --checkpoint-dir ${OUTPUT}/linear_multihead/ \
  --batch-size 1024 \
  --val_epoch 1 \
  --lr-classifier 0.2

For DeiT-S

python3 -m torch.distributed.launch --nproc_per_node=8 evaluate_vitlinear.py \
  --arch vit_s \
  --pretrained_weights ${OUTPUT}/checkpoint.pth \
  --lr 0.02 \
  --data_path ${DATAPATH} \
  --output_dir ${OUTPUT} \

For ViT-B

python3 -m torch.distributed.launch --nproc_per_node=8 evaluate_vitlinear.py \
  --arch vit_b \
  --pretrained_weights ${OUTPUT}/checkpoint.pth \
  --lr 0.0015 \
  --data_path ${DATAPATH} \
  --output_dir ${OUTPUT} \

Semi-supervised Learning

Command for training semi-supervised classification

1% Percent (61.5%)

python3 evaluate.py ${DATAPATH} ${MODELPATH} \
  --weights finetune \
  --lr-backbone 0.04 \
  --lr-classifier 0.2 \
  --train-percent 1 \
  --weight-decay 0 \
  --epochs 20 \
  --backbone 'resnet50'

10% Percent (71.7%)

python3 evaluate.py ${DATAPATH} ${MODELPATH} \
  --weights finetune \
  --lr-backbone 0.02 \
  --lr-classifier 0.2 \
  --train-percent 10 \
  --weight-decay 0 \
  --epochs 20 \
  --backbone 'resnet50'

100% Percent (78.4%)

python3 evaluate.py ${DATAPATH} ${MODELPATH} \
  --weights finetune \
  --lr-backbone 0.01 \
  --lr-classifier 0.2 \
  --train-percent 100 \
  --weight-decay 0 \
  --epochs 30 \
  --backbone 'resnet50'

Detection

Instruction

  1. Install detectron2.

  2. Convert a pre-trained MoCo model to detectron2's format:

    python3 detection/convert-pretrain-to-detectron2.py ${MODELPATH} ${OUTPUTPKLPATH}
    
  3. Put dataset under "detection/datasets" directory, following the directory structure requried by detectron2.

  4. Training: VOC

    cd detection/
    python3 train_net.py \
      --config-file voc_fpn_1fc/pascal_voc_R_50_FPN_24k_infomin.yaml \
      --num-gpus 8 \
      MODEL.WEIGHTS ../${OUTPUTPKLPATH}
    

    COCO

    python3 train_net.py \
      --config-file infomin_configs/R_50_FPN_1x_infomin.yaml \
      --num-gpus 8 \
      MODEL.WEIGHTS ../${OUTPUTPKLPATH}
    
Owner
Bytedance Inc.
Bytedance Inc.
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
Bayesian algorithm execution (BAX)

Bayesian Algorithm Execution (BAX) Code for the paper: Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mut

Willie Neiswanger 38 Dec 08, 2022
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022