Stochastic Normalizing Flows

Overview

Stochastic Normalizing Flows

We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that can efficiently sample x and compute the generation probability p(x), so that probability-based methods can be used to train the generator. Boltzmann-generating flows combine flows and reweighting in order to learn to generate unbiased samples with respect to some target density exp(-u(x)) that is approximated by p(x) and then reweighted. Here we introduce sochasticity in Boltzmann-generating flows. The key methodological advance is that we avoid to compute p(x) point-wise, which would require an intractable integration over all paths mapping to the same x, and show how both training of the flow and reweighting of p(x) to exp(-u(x)) can be done via path sampling and without requiring p(x) explicitly.

Stochastic Normalizing Flows mix invertible neural networks and stochastic sampling layers

Publication

Please find the arxiv preprint here: https://arxiv.org/abs/2002.06707

Stochastic Normalizing Flows is in press in NeurIPS 2020, citation update is coming up...

@article{snf,
  title={Stochastic Normalizing Flows},
  author={H. Wu and J. K{\"o}hler and F. {\'e}},
  journal = {arxiv:2002.06707},
  year = {2020}
}

Installation and running experiments

System requirements All experiments were run with Python 3.7 and PyTorch 1.5 on MacOS. They are expected to work on MacOS and Linux systems with these or newer Python and PyTorch versions

Installation Install the bgtorch flow package

cd bgtorch
python setup.py develop
cd ..

Install snf_code package (specialized code for this paper)

cd snf_code
python setup.py develop
cd ..

Optional: install OpenMM for running experiment 3

conda install -c omnia openmm 
conda install -c omnia openmmtools 

Run Experiments

  • To run experiments 1-3, open and run the respective notebooks with jupyter
  • To run experiment 4, run the respective Python file directly
Owner
AI4Science group, FU Berlin (Frank Noé and co-workers)
AI4Science group, FU Berlin (Frank Noé and co-workers)
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022
An Approach to Explore Logistic Regression Models

User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat

0 Nov 12, 2021
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022