Learning from Synthetic Humans, CVPR 2017

Related tags

Deep Learningsurreal
Overview

Learning from Synthetic Humans (SURREAL)

Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid, Learning from Synthetic Humans, CVPR 2017.

[Project page] [arXiv]

Contents

1. Download SURREAL dataset

In order to download SURREAL dataset, you need to accept the license terms. The links to license terms and download procedure are available here:

https://www.di.ens.fr/willow/research/surreal/data/

Once you receive the credentials to download the dataset, you will have a personal username and password. Use these either to download the dataset excluding optical flow data from here: (SURREAL_v1.tar.gz, 86GB) or download individual files with the download/download_surreal.sh script as follows:

./download_surreal.sh /path/to/dataset yourusername yourpassword

You can check Storage info for how much disk space they require and can do partial download.

Find under datageneration/misc/3Dto2D scripts that explain the projective relations between joints2D and joints3D variables. And here, some issues about the joints are explained.

The structure of the folders is as follows:

SURREAL/data/
------------- cmu/  # using MoCap from CMU dataset
-------------------- train/
-------------------- val/ # small subset of test 
-------------------- test/
----------------------------  run0/ #50% overlap
----------------------------  run1/ #30% overlap
----------------------------  run2/ #70% overlap
------------------------------------  <sequenceName>/ #e.g. 01_01
--------------------------------------------------  <sequenceName>_c%04d.mp4        # RGB - 240x320 resolution video
--------------------------------------------------  <sequenceName>_c%04d_depth.mat  # Depth
#     depth_1,   depth_2, ...  depth_T [240x320 single] - in meters
--------------------------------------------------  <sequenceName>_c%04d_segm.mat   # Segmentation
#     segm_1,     segm_2, ...   segm_T [240x320 uint8]  - 0 for background and 1..24 for SMPL body parts
--------------------------------------------------  <sequenceName>_c%04d_gtflow.mat # Ground truth optical flow
#     gtflow_1, gtflow_2, ... gtflow_T [240x320x2 single]
--------------------------------------------------  <sequenceName>_c%04d_info.mat   # Remaining annotation
#     bg           [1xT cell]      - names of background image files
#     camDist      [1 single]      - camera distance
#     camLoc       [3x1 single]    - camera location
#     clipNo       [1 double]      - clip number of the full sequence (corresponds to the c%04d part of the file)
#     cloth        [1xT cell]      - names of texture image files
#     gender       [Tx1 uint8]     - gender (0: 'female', 1: 'male')
#     joints2D     [2x24xT single] - 2D coordinates of 24 SMPL body joints on the image pixels
#     joints3D     [3x24xT single] - 3D coordinates of 24 SMPL body joints in real world meters
#     light        [9x100 single]  - spherical harmonics lighting coefficients
#     pose         [72xT single]   - SMPL parameters (axis-angle)
#     sequence     [char]          - <sequenceName>_c%04d
#     shape        [10xT single]   - body shape parameters
#     source       [char]          - 'cmu'
#     stride       [1 uint8]       - percent overlap between clips, 30 or 50 or 70
#     zrot         [Tx1 single]    - rotation in Z (euler angle)

# *** T is the number of frames, mostly 100.

Note: There are some monster shapes in the dataset which were not cleaned before training. Some subjects spotted by visual inspection are 18, 19, 143_21.

2. Create your own synthetic data

Note June 2021: Check the surreact repository for code that works with more recent versions of libraries (e.g., Blender 2.92).

2.1. Preparation

2.1.1. SMPL data

a) You need to download SMPL for MAYA from http://smpl.is.tue.mpg.de in order to run the synthetic data generation code. Once you agree on SMPL license terms and have access to downloads, you will have the following two files:

basicModel_f_lbs_10_207_0_v1.0.2.fbx
basicModel_m_lbs_10_207_0_v1.0.2.fbx

Place these two files under datageneration/smpl_data folder.

b) With the same credentials as with the SURREAL dataset, you can download the remaining necessary SMPL data and place it in datageneration/smpl_data.

./download_smpl_data.sh /path/to/smpl_data yourusername yourpassword
smpl_data/
------------- textures/ # folder containing clothing images (also available at lsh.paris.inria.fr/SURREAL/smpl_data/textures.tar.gz)
------------- (fe)male_beta_stds.npy
------------- smpl_data.npz # 2.5GB
 # trans*           [T x 3]     - (T: number of frames in MoCap sequence)
 # pose*            [T x 72]    - SMPL pose parameters (T: number of frames in MoCap sequence)
 # maleshapes       [1700 x 10] - SMPL shape parameters for 1700 male scans
 # femaleshapes     [2103 x 10] - SMPL shape parameters for 2103 female scans 
 # regression_verts [232]
 # joint_regressor  [24 x 232]

Note: SMPL pose parameters are MoSh'ed from CMU MoCap data. Note that these are not the most recent MoSh results. For any questions regarding MoSh, please contact [email protected] instead. Here, we only provide the pose parameters for MoCap sequences, not their shape parameters (they are not used in this work, we randomly sample body shapes).

2.1.2. Background images

We only provide names of the background images we used. They are downloaded from LSUN dataset using this code. You can download images from this dataset or use any other images.

2.1.3. Blender

You need to download Blender and install scipy package to run the first part of the code. The provided code was tested with Blender2.78, which is shipped with its own python executable as well as distutils package. Therefore, it is sufficient to do the following:

# Install pip
/blenderpath/2.78/python/bin/python3.5m get-pip.py
# Install scipy
/blenderpath/2.78/python/bin/python3.5m pip install scipy

get-pip.py is downloaded from pip. Replace the blenderpath with your own and set BLENDER_PATH.

Known problem: Blender2.78a has problems with pip. You can try with new versions of Blender. Otherwise, you can install the dependencies such as scipy to a new python3.5 environment and add this environment's site-packages to PYTHONPATH before running Blender.

2.1.4. FFMPEG

If you want to save the rendered images as videos, you will need ffmpeg library. Build it and set the FFMPEG_PATH to the directory that contains lib/ and bin/ folders. Additionally, if you want to use H.264 codec as it is done in the current version of the code, you need to have the x264 libraries compiled. In that case, set X264_PATH to your build. If you use another codec, you don't need X264_PATH variable and you can remove -c:v h264 from main_part1.py.

This is how the ffmpeg was built:

# x264
./configure  --prefix=/home/gvarol/tools/ffmpeg/x264_build --enable-static --enable-shared --disable-asm
make 
make install

# ffmpeg
./configure --prefix=/home/gvarol/tools/ffmpeg/ffmpeg_build_sequoia_h264 --enable-avresample --enable-pic --disable-doc --disable-static --enable-shared --enable-gpl --enable-nonfree --enable-postproc --enable-libxcb --disable-yasm --enable-libx264 --extra-ldflags="-I/home/gvarol/tools/ffmpeg/x264_build/include -L/home/gvarol/tools/ffmpeg/x264_build/lib" --extra-cflags="-I/home/gvarol/tools/ffmpeg/x264_build/include"
make
make install

2.1.5. OpenEXR

The file type for some of the temporary outputs from Blender will be EXR images. In order to read these images, the code uses OpenEXR bindings for Python. These bindings are available for python 2, the second part of the code (main_part2.py) needs this library.

Note: OpenEXR now exists for python 3, therefore you can run pip install openexr and merge main_part1.py and main_part2.py to get rid of the python 2 requirements.

2.2. Running the code

Copy the config.copy into config and edit the bg_path, tmp_path, output_path and openexr_py2_path with your own paths.

  • bg_path contains background images and two files train_img.txt and test_img.txt. The ones used for SURREAL dataset can be found in datageneration/misc/LSUN. Note that the folder structure is flattened for each room type.

  • tmp_path stores temporary outputs and is deleted afterwards. You can use this for debugging.

  • output_path is the directory where we store all the final outputs of the rendering.

  • openexr_py2_path is the path to libraries for OpenEXR bindings for Python.

run.sh script is ran for each clip. You need to set FFMPEG_PATH, X264_PATH (optional), PYTHON2_PATH, and BLENDER_PATH variables. -t 1 option can be removed to run on multi cores, it runs faster.

# When you are ready, type:
./run.sh

3. Training models

Here, we provide code to train models on the synthetic data to predict body segmentation or depth. You can also find the models pre-trained on synthetic data.

3.1. Preparation

3.1.1. Requirements

Tested on Linux with cuda v8 and cudNN v5.1. Let me know if there are other major dependencies that I forgot to include.

3.1.2. Setup paths

Place the data under ~/datasets/SURREAL or change the opt.dataRoot in opts.lua. The outputs will be written to ~/cnn_saves/<datasetname>/<experiment>, you can change the opt.logRoot to change the cnn_saves location.

3.2. Running the code

3.2.1. Train

There are sample scripts under training/exp/train directory that are self-explanatory. Those are used for the 'Synth' experiments in the paper. Check opts.lua script to see what options are available.

3.2.2. Visualize

A few display functionalities are implemented to debug and visualize results. Example usage:

./training/exp/vis.sh 1 30 cmu eval val

3.2.3. Evaluate

To obtain the final results, you can run ./training/exp/eval.sh 1 30 cmu test, by setting the experiment number, model number, dataset and evaluation set. You can save the outputs to a text file by removing -saveScores option.

3.2.4. Use pre-trained models

We provide 4 pre-trained models for segmentation and depth, either trained using lossless renderings (png) or using the compressed videos (mp4).

./download_models.sh /path/to/models yourusername yourpassword
# model_segm_png.t7
# model_segm_mp4.t7
# model_depth_png.t7
# model_depth_mp4.t7

Use the demo script to apply these models on sample images.

qlua demo/demo.lua

You can also use demo/demo.m Matlab script to produce the visualizations in the paper.

4. Storage info

You might want to do a partial download depending on your needs.

Dataset *_info.mat *.mp4 *_segm.mat *_depth.mat *_gtflow.mat Total
SURREAL (cmu) 3.8G 3.3G 6.0G 82.5G 179G 275G

Citation

If you use this code, please cite the following:

@INPROCEEDINGS{varol17_surreal,  
  title     = {Learning from Synthetic Humans},  
  author    = {Varol, G{\"u}l and Romero, Javier and Martin, Xavier and Mahmood, Naureen and Black, Michael J. and Laptev, Ivan and Schmid, Cordelia},  
  booktitle = {CVPR},  
  year      = {2017}  
}

License

Please check the license terms before downloading and/or using the code, the models and the data. http://www.di.ens.fr/willow/research/surreal/data/license.html

Acknowledgements

The data generation code is built by Javier Romero, Gul Varol and Xavier Martin.

The training code is written by Gul Varol and is largely built on the ImageNet training example https://github.com/soumith/imagenet-multiGPU.torch by Soumith Chintala, and Stacked Hourglass Networks by Alejandro Newell.

Owner
Gul Varol
Computer Vision Researcher
Gul Varol
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
Neural Scene Flow Fields using pytorch-lightning, with potential improvements

nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o

AI葵 178 Dec 21, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023