Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

Overview

SSSNET

SSSNET: Semi-Supervised Signed Network Clustering

For details, please read our paper.

Environment Setup

Overview

The project has been tested on the following environment specification:

  1. Ubuntu 18.04.5 LTS (Other x86_64 based Linux distributions should also be fine, such as Fedora 32)
  2. Nvidia Graphic Card (NVIDIA GeForce RTX 2080 with driver version 440.36, and NVIDIA RTX 8000) and CPU (Intel Core i7-10700 CPU @ 2.90GHz)
  3. Python 3.6.13 (and Python 3.6.12)
  4. CUDA 10.2 (and CUDA 9.2)
  5. Pytorch 1.8.0 (built against CUDA 10.2) and Python 1.6.0 (built against CUDA 9.2)
  6. Other libraries and python packages (See below)

You should handle (1),(2) yourself. For (3), (4), (5) and (6), see following methods.

Installation Method 1 (Using Installation Script)

We provide two examples of environmental setup, one with CUDA 10.2 and GPU, the other with CPU.

Following steps assume you've done with (1) and (2).

  1. Install conda. Both Miniconda and Anaconda are OK.

  2. Run the following bash script under SSSNET's root directory.

./create_conda_env.sh

Installation Method 2 (.yml files)

We provide two examples of envionmental setup, one with CUDA 10.2 and GPU, the other with CPU.

Following steps assume you've done with (1) and (2).

  1. Install conda. Both Miniconda and Anaconda are OK.

  2. Create an environment and install python packages (GPU):

conda env create -f environment_GPU.yml
  1. Create an environment and install python packages (CPU):
conda env create -f environment_CPU.yml

Installation Method 3 (Manually Install)

The codebase is implemented in Python 3.6.12. package versions used for development are just below.

networkx           2.5
tqdm               4.50.2
numpy              1.19.2
pandas             1.1.4
texttable          1.6.3
latextable         0.1.1
scipy              1.5.4
argparse           1.1.0
sklearn            0.23.2
torch              1.8.1
torch-scatter      2.0.5
torch-geometric    1.6.3 (follow https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html)
matplotlib         3.3.4 (for generating plots and results)
SigNet         (for comparison methods, can get from the command: pip install git+https://github.com/alan-turing-institute/SigNet.git)

Execution checks

When installation is done, you could check you enviroment via:

bash setup_test.sh

Folder structure

  • ./execution/ stores files that can be executed to generate outputs. For vast number of experiments, we use GNU parallel, can be downloaded in command line and make it executable via:
wget http://git.savannah.gnu.org/cgit/parallel.git/plain/src/parallel
chmod 755 ./parallel
  • ./joblog/ stores job logs from parallel. You might need to create it by
mkdir joblog
  • ./Output/ stores raw outputs (ignored by Git) from parallel. You might need to create it by
mkdir Output
  • ./data/ stores processed data sets for node clustering.

  • ./src/ stores files to train various models, utils and metrics.

  • ./result_arrays/ stores results for different data sets. Each data set has a separate subfolder.

  • ./result_anlysis/ stores notebooks for generating result plots or tables.

  • ./logs/ stores trained models and logs, as well as predicted clusters (optional). When you are in debug mode (see below), your logs will be stored in ./debug_logs/ folder.

Options

SSSNET provides the following command line arguments, which can be viewed in the ./src/param_parser.py and ./src/link_sign_param_parser.py.

Synthetic data options:

See file ./src/param_parser.py.

  --p                     FLOAT         Probability of the existence of a link.                 Default is 0.02. 
  --eta                   FLOAT         Probability of flipping the sign of each edge.          Default is 0.1.
  --N                     INT           (Expected) Number of nodes in an SSBM.                  Default is 1000.
  --K                     INT           Number of blocks in an SSBM.                            Default is 3.
  --total_n               INT           Total number of nodes in the polarized network.         Default is 1050.
  --num_com               INT           Number of polarized communities (SSBMs).                Default is 2.

Major model options:

See file ./src/param_parser.py.

  --epochs                INT         Number of SSSNET (maximum) training epochs.               Default is 300. 
  --early_stopping        INT         Number of SSSNET early stopping epochs.                   Default is 100. 
  --num_trials            INT         Number of trials to generate results.                     Default is 10.
  --seed_ratio            FLOAT       Ratio in the training set of each cluster 
                                                        to serve as seed nodes.                 Default is 0.1.
  --loss_ratio            FLOAT       Ratio of loss_pbnc to loss_pbrc. -1 means only loss_pbnc. Default is -1.0.
  --supervised_loss_ratio FLOAT       Ratio of factor of supervised loss part to
                                      self-supervised loss part.                                Default is 50.
  --triplet_loss_ratio    FLOAT       Ratio of triplet loss to cross entropy loss in 
                                      supervised loss part.                                     Default is 0.1.
  --tau                   FLOAT       Regularization parameter when adding self-loops to the positive 
                                      part of the adjacency matrix, i.e. A -> A + tau * I,
                                      where I is the identity matrix.                           Default is 0.5.
  --hop                   INT         Number of hops to consider for the random walk.           Default is 2.
  --samples               INT         Number of samples in triplet loss.                        Default is 10000.
  --train_ratio           FLOAT       Training ratio.                                           Default is 0.8.  
  --test_ratio            FLOAT       Test ratio.                                               Default is 0.1.
  --lr                    FLOAT       Initial learning rate.                                    Default is 0.01.  
  --weight_decay          FLOAT       Weight decay (L2 loss on parameters).                     Default is 5^-4. 
  --dropout               FLOAT       Dropout rate (1 - keep probability).                      Default is 0.5.
  --hidden                INT         Number of hidden units.                                   Default is 32. 
  --seed                  INT         Random seed.                                              Default is 31.
  --no-cuda               BOOL        Disables CUDA training.                                   Default is False.
  --debug, -D             BOOL        Debug with minimal training setting, not to get results.  Default is False.
  --directed              BOOL        Directed input graph.                                     Default is False.
  --no_validation         BOOL        Whether to disable validation and early stopping
                                      during traing.                                            Default is False.
  --regenerate_data       BOOL        Whether to force creation of data splits.                 Default is False.
  --load_only             BOOL        Whether not to store generated data.                      Default is False.
  --dense                 BOOL        Whether not to use torch sparse.                          Default is False.
  -AllTrain, -All         BOOL        Whether to use all data to do gradient descent.           Default is False.
  --SavePred, -SP         BOOL        Whether to save predicted labels.                         Default is False.
  --dataset               STR         Data set to consider.                                     Default is 'SSBM/'.
  --all_methods           LST         Methods to use to generate results.                       Default is ['spectral','SSSNET'].
  --feature_options       LST         Features to use for SSSNET. 
                                      Can choose from ['A_reg','L','given','None'].            Default is ['A_reg'].

Reproduce results

First, get into the ./execution/ folder:

cd execution

To reproduce SSBM results.

bash SSBM.sh

To reproduce results on polarized SSBMs.

bash polarized.sh

To reproduce results of node clustering on real data.

bash real.sh

Note that if you are operating on CPU, you may delete the commands ``CUDA_VISIBLE_DEVICES=xx". You can also set you own number of parallel jobs, not necessarily following the j numbers in the .sh files.

You can also use CPU for training if you add ``--no-duca", or GPU if you delete this.

Direct execution with training files

First, get into the ./src/ folder:

cd src

Then, below are various options to try:

Creating an SSSNET model for SSBM of the default setting.

python ./train.py

Creating an SSSNET model for polarized SSBMs with 5000 nodes, N=500.

python ./train.py --dataset polarized --total_n 5000 --N 500

Creating a model for S&P1500 data set with some custom learning rate and epoch number.

python ./train.py --dataset SP1500 --lr 0.001 --epochs 300

Creating a model for Wiki-Rfa data set (directed) with specific number of trials and use CPU.

python ./train.py --dataset wikirfa --directed --no-cuda --num_trials 5

Note

  • When no ground-truth exists, the labels loaded for training/testing are not really meaningful. They simply provides some relative Adjusted Rand Index (ARI) for the model's predicted clustering to some fitted/dummy clustering. The codebase loads these fitted/dummy labels and prints out ARIs for completeness instead of evaluation purpose.

  • Other versions of the code. ./src/PyG_models.py provides a version of SSSNET with pytorch geometric message passing implementation, and ./src/PyG_train.py runs this model for SSSNET. Note that this implementation gives almost the same results.


Owner
Yixuan He
DPhil in Statistics @ University of Oxford
Yixuan He
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022