Pre-training of Graph Augmented Transformers for Medication Recommendation

Related tags

Deep LearningG-Bert
Overview

G-Bert

Pre-training of Graph Augmented Transformers for Medication Recommendation

Intro

G-Bert combined the power of Graph Neural Networks and BERT (Bidirectional Encoder Representations from Transformers) for medical code representation and medication recommendation. We use the graph neural networks (GNNs) to represent the structure information of medical codes from a medical ontology. Then we integrate the GNN representation into a transformer-based visit encoder and pre-train it on single-visit EHR data. The pre-trained visit encoder and representation can be fine-tuned for downstream medical prediction tasks. Our model is the first to bring the language model pre-training schema into the healthcare domain and it achieved state-of-the-art performance on the medication recommendation task.

Requirements

  • pytorch>=0.4
  • python>=3.5
  • torch_geometric==1.0.3

Guide

We list the structure of this repo as follows:

.
├── [4.0K]  code/
│   ├── [ 13K]  bert_models.py % transformer models
│   ├── [5.9K]  build_tree.py % build ontology
│   ├── [4.3K]  config.py % hyperparameters for G-Bert
│   ├── [ 11K]  graph_models.py % GAT models
│   ├── [   0]  __init__.py
│   ├── [9.8K]  predictive_models.py % G-Bert models
│   ├── [ 721]  run_alternative.sh % script to train G-Bert
│   ├── [ 19K]  run_gbert.py % fine tune G-Bert
│   ├── [ 19K]  run_gbert_side.py
│   ├── [ 18K]  run_pretraining.py % pre-train G-Bert
│   ├── [4.4K]  run_tsne.py # output % save embedding for tsne visualization
│   └── [4.7K]  utils.py
├── [4.0K]  data/
│   ├── [4.9M]  data-multi-side.pkl 
│   ├── [3.6M]  data-multi-visit.pkl % patients data with multi-visit
│   ├── [4.3M]  data-single-visit.pkl % patients data with singe-visit
│   ├── [ 11K]  dx-vocab-multi.txt % diagnosis codes vocabulary in multi-visit data
│   ├── [ 11K]  dx-vocab.txt % diagnosis codes vocabulary in all data
│   ├── [ 29K]  EDA.ipynb % jupyter version to preprocess data
│   ├── [ 18K]  EDA.py % python version to preprocess data
│   ├── [6.2K]  eval-id.txt % validation data ids
│   ├── [6.9K]  px-vocab-multi.txt % procedure codes vocabulary in multi-visit data
│   ├── [ 725]  rx-vocab-multi.txt % medication codes vocabulary in multi-visit data
│   ├── [2.6K]  rx-vocab.txt % medication codes vocabulary in all data
│   ├── [6.2K]  test-id.txt % test data ids
│   └── [ 23K]  train-id.txt % train data ids
└── [4.0K]  saved/
    └── [4.0K]  GBert-predict/ % model files to reproduce our result
        ├── [ 371]  bert_config.json 
        └── [ 12M]  pytorch_model.bin

Preprocessing Data

We have released the preprocessing codes named data/EDA.ipynb to process data using raw files from MIMIC-III dataset. You can download data files from MIMIC and get necessary mapping files from GAMENet.

Quick Test

To validate the performance of G-Bert, you can run the following script since we have provided the trained model binary file and well-preprocessed data.

cd code/
python run_gbert.py --model_name GBert-predict --use_pretrain --pretrain_dir ../saved/GBert-predict --graph

Cite

Please cite our paper if you find this code helpful:

@article{shang2019pre,
  title={Pre-training of Graph Augmented Transformers for Medication Recommendation},
  author={Shang, Junyuan and Ma, Tengfei and Xiao, Cao and Sun, Jimeng},
  journal={arXiv preprint arXiv:1906.00346},
  year={2019}
}

Acknowledgement

Many thanks to the open source repositories and libraries to speed up our coding progress.

Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

87 Oct 19, 2022
Pytorch implementation for RelTransformer

RelTransformer Our Architecture This is a Pytorch implementation for RelTransformer The implementation for Evaluating on VG200 can be found here Requi

Vision CAIR Research Group, KAUST 21 Nov 22, 2022
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 42 Nov 26, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023