Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Overview

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations

Official repository for paper "Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations".

This public repository is a work in progress! Results here bear no resemblance to results in the paper!

We predict the intelligibility of binaural speech signals by first extracting latent representations from raw audio. Then, a lightweight predictor over these latent representations can be trained. This results in improved performance over predicting on spectral features of the audio, despite the feature extractor not being explicitly trained for this task. In certain cases, a single layer is sufficient for strong correlations between the predictions and the ground-truth scores.

This repository contains:

  • vqcpc/ - Module for VQCPC model in PyTorch
  • stoi/ - Module for Small and SeqPool predictor model in PyTorch
  • data.py - File containing various PyTorch custom datasets
  • main-vqcpc.py - Script for VQCPC training
  • create-latents.py - Script for generating latent dataset from trained VQCPC
  • plot-latents.py - Script for visualizing extracted latent representations
  • main-stoi.py - Script for STOI predictor training
  • main-test.py - Script for evaluating models
  • compute-correlations.py - Script for computing metrics for many models
  • checkpoints/ - trained checkpoints of VQCPC and STOI predictor models
  • config/ - Directory containing various configuration files for experiments
  • results/ - Directory containing official results from experiments
  • dataset/ - Directory containing metadata files for the dataset
  • data-generator/ - Directory containing dataset generation scripts (MATLAB)

All models are implemented in PyTorch. The training scripts are implemented using ptpt - a lightweight framework around PyTorch.

Visualisation of binaural waveform, predicted per-frame STOI, and latent representation: Visualisation of binaural waveform, predicted per-frame STOI, and latent representation.

Usage

VQ-CPC Training

Begin VQ-CPC training using the configuration defined in config.toml:

python main-vqcpc.py --cfg-path config-path.toml

Other useful arguments:

--resume            # resume from specified checkpoint
--no-save           # do not save training progress (useful for debugging)
--no-cuda           # do not try to access CUDA device (very slow)
--no-amp            # disable automatic mixed precision (if you encounter NaN)
--nb-workers        # number of workers for for data loading (default: 8)
--detect-anomaly    # detect autograd anomalies and terminate if encountered
--seed              # random seed (default: 12345)

Latent Dataset Generation

Begin latent dataset generation using pre-trained VQCPC model-checkpoint.pt from dataset wav-dataset and output to latent-dataset using configuration defined in config.toml:

python create-latents.py model-checkpoint.pt wav-dataset latent-dataset --cfg-path config.toml

As above, but distributed across n processes with script rank r:

python create-latents.py model-checkpoint.pt wav-dataset latent-dataset --cfg-path config.toml --array-size n --array-rank r

Other useful arguments:

--no-cuda           # do not try to access CUDA device (very slow)
--no-amp            # disable automatic mixed precision (if you encounter NaN)
--no-tqdm           # disable progress bars
--detect-anomaly    # detect autograd anomalies and terminate if encountered
-n                  # alias for `--array-size`
-r                  # alias for `--array-rank`

Latent Plotting

Begin interactive VQCPC latent visualisation script using pre-trained model model-checkpoint.pt on dataset wav-dataset using configuration defined in config.toml:

python plot-latents.py model-checkpoint.pt wav-dataset --cfg-path config.toml

If you additionally have a pre-trained, per-frame STOI score predictor (not SeqPool predictor) you can specify the checkpoint stoi-checkpoint.pt and additional configuration stoi-config.toml, you can plot per-frame scores alongside the waveform and latent features:

python plot-latents.py model-checkpoint.pt wav-dataset --cfg-path config.toml --stoi stoi-checkpoint.pt --stoi-cfg stoi-config.toml

Other useful arguments:

--no-cuda           # do not try to access CUDA device (very slow)
--no-amp            # disable automatic mixed precision (if you encounter NaN)
--cmap              # define matplotlib colourmap
--style             # define matplotlib style

STOI Predictor Training

Begin intelligibility score predictor training script using configuration in config.toml:

python main-stoi.py --cfg-path config.toml

Other useful arguments:

--resume            # resume from specified checkpoint
--no-save           # do not save training progress (useful for debugging)
--no-cuda           # do not try to access CUDA device (very slow)
--no-amp            # disable automatic mixed precision (if you encounter NaN)
--nb-workers        # number of workers for for data loading (default: 8)
--detect-anomaly    # detect autograd anomalies and terminate if encountered
--seed              # random seed (default: 12345)

Predictor Evaluation

Begin evaluation of a pre-trained STOI score predictor using checkpoint stoi-checkpoint.pt on dataset dataset-root using configuration in stoi-config.toml:

python main-test.py stoi-checkpoint.pt dataset-root --cfg-path stoi-config.toml

Other useful arguments:

--no-save           # do not save training progress (useful for debugging)
--no-cuda           # do not try to access CUDA device (very slow)
--no-amp            # disable automatic mixed precision (if you encounter NaN)
--no-tqdm           # disable progress bars
--nb-workers        # number of workers for for data loading (default: 8)
--detect-anomaly    # detect autograd anomalies and terminate if encountered
--batch-size        # control dataloader batch size
--seed              # random seed (default: 12345)

Overall Evaluation

Compare results from many results files produced by main-test.py based on dataset ground truth:

python compute-correlations.py ground-truth.csv pred-1.csv ... pred-n.csv --names pred-1 ... pred-n

Configuration

Examples configurations for all experiments can be found here

We use toml files to define configurations. Each one consists of three sections:

  • [trainer]: configuration options for ptpt.TrainerConfig.
  • [data]: configuration options for the dataset.
  • [vqcpc] or [stoi]: configuration options for the VQCPC and predictor models respectively.

Checkpoints

Pretrained checkpoints for all models can be found here

Citation

TODO: add citation once paper published / arXiv-ed :)

Owner
Alex McKinney
Final-year student at Durham University. Interested in generative models and unsupervised representation learning.
Alex McKinney
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022