Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

Related tags

Deep LearningDAGSurv
Overview

DAGSurv

Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a parametric probabilistic function of fully or partially observed covariates. All the existing technique for survival analysis assume that the covariates are statistically independent. To integrate the cause-effect relationship between covariates and the time-to-event outcome, we present to you DAGSurv which encodes the causal DAG structure into the analysis of temporal data and eventually leads to better results (higher Concordance Index).

plot

Dependencies

This code requires the following key dependencies:

  • Python 3.8
  • torch==1.6.0
  • pycox==0.2.1

Usage

To train the DAGSurv model, please run the main.py as python main.py

There are a number of hyper-parameters present in the script which can be easily changed.

Experiments

We evaluated our approach on two real-world and two synthetic datasets; and used time-dependent Concordance Index(C-td) as our evaluation metric.

Real-World Datasets

  • METABRIC : The Molecular Taxonomy of Breast Cancer International Consor- tium (METABRIC) is a clinical dataset which consists of gene expressions used to determine different subgroups of breast cancer. We consider the data for 1,904 patients with each patient having 9 covariates. Furthermore, out of the total 1,904 patients, 801 (42.06%) are right-censored, and the rest are deceased (event).
  • GBSG : Rotterdam and German Breast Cancer Study Group (GBSG) contains breast-cancer data from Rotterdam Tumor bank. The dataset consists of 2,232 patients out of which 965 (43.23%) are right-censored, remaining are deceased (event), and there were no missing values. In total, there were 7 features per patient.

Time-Dependent Concordance Index(C-td)

We employ the time-dependent concordance index (CI) as our evaluation metric since it is robust to changes in the survival risk over time. Mathematically it is given as,

plot

Results

Here, we present our results on the two real-world datasets mentioned above -

Model/Experiment METABRIC GBSG
DAGSurv 0.7323 ± 0.0056 0.6892 ± 0.0023
DeepHit 0.7309 ± 0.0047 0.6602 ± 0.0026
DeepSurv 0.6575 ± 0.0021 0.6651 ± 0.0020
CoxTime 0.6679 ± 0.0020 0.6687 ± 0.0019

Code References

[1] Yue Yu, Jie Chen, Tian Gao, Mo Yu. "DAG-GNN: DAG Structure Learning with Graph Neural Networks."
[2] Changhee Lee, William R. Zame, Jinsung Yoon, Mihaela van der Schaar. "DeepHit: A Deep Learning Approach to Survival Analysis with Competing Risks."

Owner
Rahul Kukreja
Rahul Kukreja
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023