Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Overview

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020)

Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, Amir Globerson

Main project page.

Generation of scenes with many objects. Our method achieves better performance on such scenes than previous methods. Left: A partial input scene graph. Middle: Generation using [1]. Right: Generation using our proposed method.

Our novel contributions are:

  1. We propose a model that uses canonical representations of SGs, thus obtaining stronger invariance properties. This in turn leads to generalization on semantically equivalent graphs and improved robustness to graph size and noise in comparison to existing methods.
  2. We show how to learn the canonicalization process from data.
  3. We use our canonical representations within an SG-to-image model and demonstrate our approach results in an improved generation on Visual Genome, COCO, and CLEVR, compared to the state-of-the-art baselines.

Dependencies

To get started with the framework, install the following dependencies:

Data

Follow the commands below to build the data.

COCO

./scripts/download_coco.sh

VG

./scripts/download_vg.sh

CLEVR

Please download the CLEVR-Dialog Dataset from here.

Training

Training a SG-to-Layout model:

python -m scripts.train --dataset={packed_coco, packed_vg, packed_clevr}  

Training AttSpade - Layout-to-Image model:

Optional arguments:

--output_dir=output_path_dir/%s (s is the run_name param) --run_name=folder_name --checkpoint_every=N (default=5000) --dataroot=datasets_path --debug (a flag for debug)

Train on COCO (with boxes):

python -m scripts.train --dataset=coco --batch_size=16 --loader_num_workers=0 --skip_graph_model=0 --skip_generation=0 --image_size=256,256 --min_objects=1 --max_objects=1000 --gpu_ids=0 --use_cuda

Train on VG:

python -m scripts.train --dataset=vg --batch_size=16 --loader_num_workers=0 --skip_graph_model=0 --skip_generation=0 --image_size=256,256 --min_objects=3 --max_objects=30 --gpu_ids=0 --use_cuda

Train on CLEVR:

python -m scripts.train --dataset=packed_clevr --batch_size=6 --loader_num_workers=0 --skip_graph_model=0 --skip_generation=0 --image_size=256,256 --use_img_disc=1 --gpu_ids=0 --use_cuda

Inference

Inference SG-to-Layout

To produce layout outputs and IOU results, run:

python -m scripts.layout_generation --checkpoint=<trained_model_folder> --gpu_ids=<0/1/2>

A new folder with the results will be created in: <trained_model_folder>

Pre-trained Models:

Packed COCO: link

Packed Visual Genome: link

Inference Layout-to-Image (LostGANs)

Please use LostGANs implementation

Inference Layout-to-Image (from dataframe)

To produce the image from a dataframe, run:

python -m scripts.generation_dataframe --checkpoint=<trained_model_folder>

A new folder with the results will be created in: <trained_model_folder>

Inference Layout-to-Image (AttSPADE)

COCO/ Visual Genome

  1. Generate images from a layout (dataframe):
python -m scripts.generation_dataframe --gpu_ids=<0/1/2> --checkpoint=<model_path> --output_dir=<output_path> --data_frame=<dataframe_path> --mode=<gt/pred>

mode=gt defines use gt_boxes while mode=pred use predicted box by our WSGC model from the paper (see the dataframe for more details).

Pre-trained Models:
COCO

dataframe: link; 128x128 resolution: link; 256x256 resolution: link

Visual Genome

dataframe: link; 128x128 resolution: link; 256x256 resolution: link

  1. Generate images from a scene graph:
python -m scripts.generation_attspade --gpu_ids=<0/1/2> --checkpoint=<model/path> --output_dir=<output_path>

CLEVR

This script generates CLEVR images on large scene graphs from scene_graphs.pkl. It generates the CLEVR results for both WSGC + AttSPADE and Sg2Im + AttSPADE. For more information, please refer to the paper.

python -m scripts.generate_clevr --gpu_ids=<0/1/2> --layout_not_learned_checkpoint=<model_path> --layout_learned_checkpoint=<model_path> --output_dir=<output_path>
Pre-trained Models:

Baseline (Sg2Im): link; WSGC: link

Acknowledgment

References

[1] Justin Johnson, Agrim Gupta, Li Fei-Fei, Image Generation from Scene Graphs, 2018.

Citation

@inproceedings{herzig2019canonical,
 author    = {Herzig, Roei and Bar, Amir and Xu, Huijuan and Chechik, Gal and Darrell, Trevor and Globerson, Amir},
 title     = {Learning Canonical Representations for Scene Graph to Image Generation},
 booktitle = {Proc. of the European Conf. on Computer Vision (ECCV)},
 year      = {2020}
}
Owner
roei_herzig
CS PhD student at Tel Aviv University. Algorithm Researcher, R&D at Nexar & Trax. Studied MSc (CS), BSc (CS) and BSc (Physics) at TAU.
roei_herzig
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

118 Dec 12, 2022
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
Code accompanying our NeurIPS 2021 traffic4cast challenge

Traffic forecasting on traffic movie snippets This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the c

Nina Wiedemann 2 Aug 09, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022