This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

Related tags

Deep LearningCEDR
Overview

CEDR

This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper:

"Contrastive Embedding Distribution Refinement and Entropy-Aware Attention for 3D Point Cloud Classification"

Updates

  • 03/01/2022 The paper is currently under review, and the codes will be released in the future.
  • 06/01/2022 codes for both model.py and main.py are available now.
  • 10/01/2022 Update a pre-trained model (OA: 82.90%, mAcc: 80.60%) on ScanObjectNN via google drive.
  • 10/01/2022 Pre-trained model (OA: 93.10%, mAcc: 91.10%) on ModelNet40 is available at google drive.

Network Architecture

image

Implementation Platforms

  • Python 3.6
  • Pytorch 0.4.0 with Cuda 9.1
  • Higher Python/Pytorch/Cuda versions should also be compatible

ModelNet40 Experiment

Test the pre-trained model:

  • download ModelNet40, unzip and move modelnet40_ply_hdf5_2048 folder to ./data

  • put the pre-trained model under ./checkpoints/modelnet

  • then run (more settings can be modified in main.py):

python main.py --exp_name=gbnet_modelnet40_eval --model=gbnet --dataset=modelnet40 --eval=True --model_path=checkpoints/modelnet/gbnet_modelnet40.t7

ScanObjectNN Experiment

Test the pre-trained model:

  • download ScanObjectNN, and extract both training_objectdataset_augmentedrot_scale75.h5 and test_objectdataset_augmentedrot_scale75.h5 files to ./data
  • put the pre-trained model under ./checkpoints/gbnet_scanobjectnn
  • then run (more settings can be modified in main.py):
python main.py --exp_name=gbnet_scanobjectnn_eval --model=gbnet --dataset=ScanObjectNN --eval=True --model_path=checkpoints/gbnet_scanobjectnn/gbnet_scanobjectnn.t7

Pre-trained Models

  • Python 3.6, Pytorch 0.4.0, Cuda 9.1
  • 8 GeForce RTX 2080Ti GPUs
  • using default training settings as in main.py
Model Dataset #Points Data
Augmentation
Performance
on Test Set
Download
Link
PointNet++ ModelNet40 1024 random scaling
and translation
overall accuracy: 93.10%
average class accuracy: 91.10%
google drive
GBNet ScanObjectNN 1024 random scaling
and translation
overall accuracy: 82.90%
average class accuracy: 80.60%
google drive

Acknowledgement

The code is built on GBNet. We thank the authors for sharing the codes. We also thank the Big Data Center of Southeast University for providing the facility support on the numerical calculations in this paper.

Owner
phoenix
phoenix
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
A deep learning CNN model to identify and classify and check if a person is wearing a mask or not.

Face Mask Detection The Model is designed to check if any human is wearing a mask or not. Dataset Description The Dataset contains a total of 11,792 i

1 Mar 01, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022