This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Overview

Skeleton Aware Multi-modal Sign Language Recognition

By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu.

Smile Lab @ Northeastern University

Python 3.7 Packagist Last Commit License: CC0 4.0 PWC


This repo contains the official code of Skeleton Aware Multi-modal Sign Language Recognition (SAM-SLR) that ranked 1st in CVPR 2021 Challenge: Looking at People Large Scale Signer Independent Isolated Sign Language Recognition.

Our paper has been accepted to CVPR21 Workshop. A preprint version is available on arXiv. Please cite our paper if you find this repo useful in your research.

News

[2021/04/10] Our workshop paper has been accepted. Citation info updated.

[2021/03/24] A preprint version of our paper is released here.

[2021/03/20] Our work has been verified and announced by the organizers as the 1st place winner of the challenge!

[2021/03/15] The code is released to public on GitHub.

[2021/03/11] Our team (smilelab2021) ranked 1st in both tracks and here are the links to the leaderboards:

Table of Contents

Data Preparation

Download AUTSL Dataset.

We processed the dataset into six modalities in total: skeleton, skeleton features, rgb frames, flow color, hha and flow depth.

  1. Please put original train, val, test videos in data folder as
    data
    ├── train
    │   ├── signer0_sample1_color.mp4
    │   ├── signer0_sample1_depth.mp4
    │   ├── signer0_sample2_color.mp4
    │   ├── signer0_sample2_depth.mp4
    │   └── ...
    ├── val
    │   └── ...
    └── test
        └── ...
  1. Follow the data_processs/readme.md to process the data.

  2. Use TPose/data_process to extract wholebody pose features.

Requirements and Docker Image

The code is written using Anaconda Python >= 3.6 and Pytorch 1.7 with OpenCV.

Detailed enviroment requirment can be found in requirement.txt in each code folder.

For convenience, we provide a Nvidia docker image to run our code.

Download Docker Image

Pretrained Models

We provide pretrained models for all modalities to reproduce our submitted results. Please download them at and put them into corresponding folders.

Download Pretrained Models

Usage

Reproducing the Results Submitted to CVPR21 Challenge

To test our pretrained model, please put them under each code folders and run the test code as instructed below. To ensemble the tested results and reproduce our final submission. Please copy all the results .pkl files to ensemble/ and follow the instruction to ensemble our final outputs.

For a step-by-step instruction, please see reproduce.md.

Skeleton Keypoints

Skeleton modality can be trained, finetuned and tested using the code in SL-GCN/ folder. Please follow the SL-GCN/readme.md instruction to prepare skeleton data into four streams (joint, bone, joint_motion, bone motion).

Basic usage:

python main.py --config /path/to/config/file

To train, finetune and test our models, please change the config path to corresponding config files. Detailed instruction can be found in SL-GCN/readme.md

Skeleton Feature

For the skeleton feature, we propose a Separable Spatial-Temporal Convolution Network (SSTCN) to capture spatio-temporal information from those features.

Please follow the instruction in SSTCN/readme.txt to prepare the data, train and test the model.

RGB Frames

The RGB frames modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_clip.py

python Sign_Isolated_Conv3D_clip_finetune.py

python Sign_Isolated_Conv3D_clip_test.py

Detailed instruction can be found in Conv3D/readme.md

Optical Flow

The RGB optical flow modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_flow_clip.py

python Sign_Isolated_Conv3D_flow_clip_funtine.py

python Sign_Isolated_Conv3D_flow_clip_test.py

Detailed instruction can be found in Conv3D/readme.md

Depth HHA

The Depth HHA modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_hha_clip_mask.py

python Sign_Isolated_Conv3D_hha_clip_mask_finetune.py

python Sign_Isolated_Conv3D_hha_clip_mask_test.py

Detailed instruction can be found in Conv3D/readme.md

Depth Flow

The Depth Flow modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_depth_flow_clip.py

python Sign_Isolated_Conv3D_depth_flow_clip_finetune.py

python Sign_Isolated_Conv3D_depth_flow_clip_test.py

Detailed instruction can be found in Conv3D/readme.md

Model Ensemble

For both RGB and RGBD track, the tested results of all modalities need to be ensemble together to generate the final results.

  1. For RGB track, we use the results from skeleton, skeleton feature, rgb, and flow color modalities to ensemble the final results.

    a. Test the model using newly trained weights or provided pretrained weights.

    b. Copy all the test results to ensemble folder and rename them as their modality names.

    c. Ensemble SL-GCN results from joint, bone, joint motion, bone motion streams in gcn/ .

     python ensemble_wo_val.py; python ensemble_finetune.py
    

    c. Copy test_gcn_w_val_finetune.pkl to ensemble/. Copy RGB, TPose and optical flow results to ensemble/. Ensemble final prediction.

     python ensemble_multimodal_rgb.py
    

    Final predictions are saved in predictions.csv

  2. For RGBD track, we use the results from skeleton, skeleton feature, rgb, flow color, hha and flow depth modalities to ensemble the final results. a. copy hha and flow depth modalities to ensemble/ folder, then

     python ensemble_multimodal_rgb.py
    

To reproduce our results in CVPR21Challenge, we provide .pkl files to ensemble and obtain our final submitted predictions. Detailed instruction can be find in ensemble/readme.md

License

Licensed under the Creative Commons Zero v1.0 Universal license with the following exceptions:

  • The code is released for academic research use only. Commercial use is prohibited.
  • Published versions (changed or unchanged) must include a reference to the origin of the code.

Citation

If you find this project useful in your research, please cite our paper

@inproceedings{jiang2021skeleton,
  title={Skeleton Aware Multi-modal Sign Language Recognition},
  author={Jiang, Songyao and Sun, Bin and Wang, Lichen and Bai, Yue and Li, Kunpeng and Fu, Yun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  year={2021}
}

@article{jiang2021skeleton,
  title={Skeleton Aware Multi-modal Sign Language Recognition},
  author={Jiang, Songyao and Sun, Bin and Wang, Lichen and Bai, Yue and Li, Kunpeng and Fu, Yun},
  journal={arXiv preprint arXiv:2103.08833},
  year={2021}
}

Reference

https://github.com/Sun1992/SSTCN-for-SLR

https://github.com/jin-s13/COCO-WholeBody

https://github.com/open-mmlab/mmpose

https://github.com/0aqz0/SLR

https://github.com/kchengiva/DecoupleGCN-DropGraph

https://github.com/HRNet/HRNet-Human-Pose-Estimation

https://github.com/charlesCXK/Depth2HHA

Owner
Isen (Songyao Jiang)
Isen (Songyao Jiang)
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
Implementation of a Transformer using ReLA (Rectified Linear Attention)

ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt

Phil Wang 49 Oct 14, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin

Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S

12 Dec 11, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021