This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Overview

Skeleton Aware Multi-modal Sign Language Recognition

By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu.

Smile Lab @ Northeastern University

Python 3.7 Packagist Last Commit License: CC0 4.0 PWC


This repo contains the official code of Skeleton Aware Multi-modal Sign Language Recognition (SAM-SLR) that ranked 1st in CVPR 2021 Challenge: Looking at People Large Scale Signer Independent Isolated Sign Language Recognition.

Our paper has been accepted to CVPR21 Workshop. A preprint version is available on arXiv. Please cite our paper if you find this repo useful in your research.

News

[2021/04/10] Our workshop paper has been accepted. Citation info updated.

[2021/03/24] A preprint version of our paper is released here.

[2021/03/20] Our work has been verified and announced by the organizers as the 1st place winner of the challenge!

[2021/03/15] The code is released to public on GitHub.

[2021/03/11] Our team (smilelab2021) ranked 1st in both tracks and here are the links to the leaderboards:

Table of Contents

Data Preparation

Download AUTSL Dataset.

We processed the dataset into six modalities in total: skeleton, skeleton features, rgb frames, flow color, hha and flow depth.

  1. Please put original train, val, test videos in data folder as
    data
    ├── train
    │   ├── signer0_sample1_color.mp4
    │   ├── signer0_sample1_depth.mp4
    │   ├── signer0_sample2_color.mp4
    │   ├── signer0_sample2_depth.mp4
    │   └── ...
    ├── val
    │   └── ...
    └── test
        └── ...
  1. Follow the data_processs/readme.md to process the data.

  2. Use TPose/data_process to extract wholebody pose features.

Requirements and Docker Image

The code is written using Anaconda Python >= 3.6 and Pytorch 1.7 with OpenCV.

Detailed enviroment requirment can be found in requirement.txt in each code folder.

For convenience, we provide a Nvidia docker image to run our code.

Download Docker Image

Pretrained Models

We provide pretrained models for all modalities to reproduce our submitted results. Please download them at and put them into corresponding folders.

Download Pretrained Models

Usage

Reproducing the Results Submitted to CVPR21 Challenge

To test our pretrained model, please put them under each code folders and run the test code as instructed below. To ensemble the tested results and reproduce our final submission. Please copy all the results .pkl files to ensemble/ and follow the instruction to ensemble our final outputs.

For a step-by-step instruction, please see reproduce.md.

Skeleton Keypoints

Skeleton modality can be trained, finetuned and tested using the code in SL-GCN/ folder. Please follow the SL-GCN/readme.md instruction to prepare skeleton data into four streams (joint, bone, joint_motion, bone motion).

Basic usage:

python main.py --config /path/to/config/file

To train, finetune and test our models, please change the config path to corresponding config files. Detailed instruction can be found in SL-GCN/readme.md

Skeleton Feature

For the skeleton feature, we propose a Separable Spatial-Temporal Convolution Network (SSTCN) to capture spatio-temporal information from those features.

Please follow the instruction in SSTCN/readme.txt to prepare the data, train and test the model.

RGB Frames

The RGB frames modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_clip.py

python Sign_Isolated_Conv3D_clip_finetune.py

python Sign_Isolated_Conv3D_clip_test.py

Detailed instruction can be found in Conv3D/readme.md

Optical Flow

The RGB optical flow modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_flow_clip.py

python Sign_Isolated_Conv3D_flow_clip_funtine.py

python Sign_Isolated_Conv3D_flow_clip_test.py

Detailed instruction can be found in Conv3D/readme.md

Depth HHA

The Depth HHA modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_hha_clip_mask.py

python Sign_Isolated_Conv3D_hha_clip_mask_finetune.py

python Sign_Isolated_Conv3D_hha_clip_mask_test.py

Detailed instruction can be found in Conv3D/readme.md

Depth Flow

The Depth Flow modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_depth_flow_clip.py

python Sign_Isolated_Conv3D_depth_flow_clip_finetune.py

python Sign_Isolated_Conv3D_depth_flow_clip_test.py

Detailed instruction can be found in Conv3D/readme.md

Model Ensemble

For both RGB and RGBD track, the tested results of all modalities need to be ensemble together to generate the final results.

  1. For RGB track, we use the results from skeleton, skeleton feature, rgb, and flow color modalities to ensemble the final results.

    a. Test the model using newly trained weights or provided pretrained weights.

    b. Copy all the test results to ensemble folder and rename them as their modality names.

    c. Ensemble SL-GCN results from joint, bone, joint motion, bone motion streams in gcn/ .

     python ensemble_wo_val.py; python ensemble_finetune.py
    

    c. Copy test_gcn_w_val_finetune.pkl to ensemble/. Copy RGB, TPose and optical flow results to ensemble/. Ensemble final prediction.

     python ensemble_multimodal_rgb.py
    

    Final predictions are saved in predictions.csv

  2. For RGBD track, we use the results from skeleton, skeleton feature, rgb, flow color, hha and flow depth modalities to ensemble the final results. a. copy hha and flow depth modalities to ensemble/ folder, then

     python ensemble_multimodal_rgb.py
    

To reproduce our results in CVPR21Challenge, we provide .pkl files to ensemble and obtain our final submitted predictions. Detailed instruction can be find in ensemble/readme.md

License

Licensed under the Creative Commons Zero v1.0 Universal license with the following exceptions:

  • The code is released for academic research use only. Commercial use is prohibited.
  • Published versions (changed or unchanged) must include a reference to the origin of the code.

Citation

If you find this project useful in your research, please cite our paper

@inproceedings{jiang2021skeleton,
  title={Skeleton Aware Multi-modal Sign Language Recognition},
  author={Jiang, Songyao and Sun, Bin and Wang, Lichen and Bai, Yue and Li, Kunpeng and Fu, Yun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  year={2021}
}

@article{jiang2021skeleton,
  title={Skeleton Aware Multi-modal Sign Language Recognition},
  author={Jiang, Songyao and Sun, Bin and Wang, Lichen and Bai, Yue and Li, Kunpeng and Fu, Yun},
  journal={arXiv preprint arXiv:2103.08833},
  year={2021}
}

Reference

https://github.com/Sun1992/SSTCN-for-SLR

https://github.com/jin-s13/COCO-WholeBody

https://github.com/open-mmlab/mmpose

https://github.com/0aqz0/SLR

https://github.com/kchengiva/DecoupleGCN-DropGraph

https://github.com/HRNet/HRNet-Human-Pose-Estimation

https://github.com/charlesCXK/Depth2HHA

Owner
Isen (Songyao Jiang)
Isen (Songyao Jiang)
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
Generating Videos with Scene Dynamics

Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs

Carl Vondrick 706 Jan 04, 2023
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

archinet.ai 380 Dec 28, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 05, 2023