Wafer Fault Detection using MlOps Integration

Overview

Wafer Fault Detection using MlOps Integration

This is an end to end machine learning project with MlOps integration for predicting the quality of wafer sensors.

Demo

  • Link

Table of Contents

  • Problem Statement
  • How to run the application
  • Technologies used
  • Proposed Solution and Architecture
  • WorkFlow of project
  • Technologies used

Problem Statement

Improper maintenance on a machine or system impacts to worsen mean time between failure (MTBF). Manual diagnostic procedures tend to extended downtime at the system breakdown. Machine learning techniques based on the internet of things (IoT) sensor data were used to make predictive maintenance to determine whether the sensor needs to be replaced or not.

How to implement the project

  • Create a conda environment
conda create -n waferops python=3.6.9
  • Activate the environment
conda activate wafer-ops
  • Install the requirements.txt file
pip install -r requirements.txt

Before running the project atleast in local environment (personal pc or laptop) run this command in new terminal, basically run the mlflow server.

mlflow server --backend-store-uri sqlite:///mlflow.db --default-artifact-root artifacts --host 0.0.0.0 -p 5000

After running the mlflow server in new terminal, open another terminal and run the following command, since we are using fastapi. The command to run the application will change a bit

uvicorn main:app --reload

WorkFlow of the Project

To solve the problem statement we have proposed a customized machine learning approach.

WorkFlow of Project

In the first place, whenever we start a machine learning project, we need to sign a data sharing agreement with the client, where sign off some of the parameters like,

  • Format of data - like csv format or json format,etc
  • Number of Columns
  • Length of date stamp in the file
  • Length of time stamp in the file
  • DataType of each sensor - like float,int,string

The client will send multiple set of files in batches at a given location. In our case, the data which will be given to us, will consist of wafer names and 590 columns of different sensor values for each wafer. The last column will have Good/Bad value for each wafer as per the data sharing agreement

  • +1 indicates bad wafer
  • -1 indicates good wafer

These data can be found in the schema training json file.More details are present in LLD documentation of project.

Technical Aspects of the Project

As discussed, the client will send multiple set of files in batches at a given location. After signing the data sharing agreement, we create the master data management which is nothing but the schema training json file and schema prediction json (this is be used for prediction data). We have divided the project into multiple modules, for high level understanding some of them are

Training Validation

In this module,we will trigger the training validation pipeline,which will be responsible for training validation. In the training validation pipeline,we are internally triggering some of the pipelines, some of the internal function are

  • Training raw data validation - This function is responsible for validating the raw data based on schema training json file, and we have manually created a regex pattern for validating the filename of the data. We are even validating length of date time stamp, length of time stamp of the data. If some of the data does not match the criteria of the master data management, if move that files to bad folder and will not be used for training or prediction purposes.

  • Data Transformation - Previously, we have created both good and bad directory for storing the data based on the master data management. Now for the data transformation we are only performing the data transformation on good data folder. In the data transformation, we replace the missing values with the nan values.

  • DataBase Operation - Now that we have validated the data and transformed the data which is suitable for the further training purposes. In database operation we are using SQL-Lite. From the good folder we are inserting the data into a database. After the insertion of the data is done we are deleting the good data folder and move the bad folder to archived folder. Next inserting the good database, we are extracting the data from the database and converting into csv format.

Training Model

In the previous pipeline,after the database operation, we have exported the good data from database to csv format. In the training model pipeline, we are first fetching the data from the exported csv file.

Next comes the preprocessing of the data, where we are performing some of the preprocessing functions such as remove columns, separate label feature, imputing the missing the values if present. Dropping the columns with zero standard deviation.

As mentioned we are trying to solve the problem by using customized machine learning approach.We need to create clusters of data which represents the variation of data. Clustering of the data is based on K-Means clustering algorithm.

For every cluster which has been created two machine learning models are being trained which are RandomForest and XGBoost models with GridSearchCV as the hyperparameter tuning technique. The metrics which are monitoring are accuracy and roc auc score as the metric.

After training all the models, we are saving them to trained models folders.

Now that the models are saved into the trained models folder, here the mlops part comes into picture, where in for every cluster we are logging the parameters, metrics and models to mlflow server. On successful completion of training of all the models and logging them to mlflow, next pipeline will be triggered which is load production model pipeline.

Since all the trained models, will have different metrics and parameters, which can productionize them based on metrics. For this project we have trained 6 models and we will productionize 3 models along with KMeans model for the prediction service.

Here is glimpse of the mlflow server showing stages of the models (Staging or Production based on metrics)

mlflow server image

Prediction pipeline

The prediction pipeline will be triggered following prediction validation and prediction from the model. In this prediction pipeline, the same validation steps like validating file name and so on. The prediction pipeline, and the preprocessing of prediction data. For the prediction, we will load the trained kmeans model and then predict the number of clusters, and for every cluster, model will be loaded and the prediction will be done. The predictions will saved to predictions.csv file and then prediction is completed.

Technologies Used

  • Python
  • Sklearn
  • FastAPI
  • Machine Learning
  • Numpy
  • Pandas
  • MlFlow
  • SQL-Lite

Algorithms Used

  • Random Forest
  • XGBoost

Metrics

  • Accuracy
  • ROC AUC score

Cloud Deployment

  • AWS
Owner
Sethu Sai Medamallela
Aspiring Machine Learning Engineer
Sethu Sai Medamallela
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
Generating Videos with Scene Dynamics

Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs

Carl Vondrick 706 Jan 04, 2023
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022