Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Overview

Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occam’s Razor?"

Authors: Gonzalo Jaimovitch-López, David Castellano-Falcón, Cèsar Ferri, José Hernández-Orallo

Experiments

GPT-2

The experiment is fully performed on a single Notebook.

When opening the Notebook, just follow the code sections to run the experiment. Note that a file with the experiment results is provided. The results are printed in the corresponding section.

GPT-3

There are different Notebooks which post-process the outputs returned by GPT-3 in the experiment.

You can find two folders: main (for the experiments presented in the main paper) and additional (for the experiments included in the supplementary material).

The use of GPT-3 requires of an API key which cannot be provided with the code. However, the prompts used in the experiment are included in the repository.

If you would like to run the prompt queries in GPT-3, visit the OpenAI´s API Webpage. Make sure you adjust the temperature depending on the experiment you would like to test. Furthermore, note that results obtained with the use of the API from the webpage and the use of the API from the Python environment might differ based on the different encodings.

Main experiments

  1. Temperature = 0

  2. Temperature = 1

Run the lines of code in order. Note that you will have to choose (using the following cell at the top of the notebooks) the desired model to obtain the results.

#Choose between {'ada', 'babbage', 'curie', 'davinci'}
MODEL = 'davinci'

Additional experiments

  1. Alternative alphabet (Apple, Banana)

  2. Separator between characters in input / output

  3. Concepts with loops

  4. Many more concepts / Not using machine teaching

    Run the lines of code in order. Note that you will have to choose (using the following cell at the top of the notebooks) the desired experiment to obtain the results.

#Choose complete_EXPERIMENT.csv being EXPERIMENT {'ada', 'babbage', 'curie', 'davinci', 'EXP_A', 'EXP_B'}
EXPERIMENT = 'ada'
  1. Baselines

MagicHaskeller

MagicHaskeller must be previously installed.

To run the experiment, execute the Python script. The returned functions will be written in the corresponding file depending on the path provided in the script.

From the list of functions (you can find the outputs in this folder), we take the first function from the top of the list and use it as a solution, querying the test examples using Haskell. The summary of the results can be found in MHResults.txt.

Louise

Louise must be previously installed.

First you should run Louise and execute the dedicated script including the different examples where indicated depending on the concept (you can find them in pos_neg_ex.txt).

Subsequently, the evaluation of the test examples (using the predicates returned by the system) is performed in the Notebook.

Humans

We provide a PDF with the questionnaire performed by the human participants in this experiment. Note that the headlines mark the start of each screen that was presented to the participants, as this is not clearly reflected in the PDF version of the form. This can be observed when opening the HTML file, stored in the source code folder.

Additional Material

A Python script is provided to test the P3 functioning.

Finally, the R scripts for the generation of the paper plots are included.

Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022