This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

Overview

🌟 Sparse Spatial Transformers for Few-Shot Learning

This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers).

Our code is based on MCL and FEAT.

πŸ”– Citation

If you find our work useful, please consider citing our work using the bibtex:

@Article{chen2021sparse,
	author  = {Chen, Haoxing and Li, Huaxiong and Li, Yaohui and Chen, Chunlin},
	title   = {Sparse Spatial Transformers for Few-Shot Learning},
	journal = {arXiv preprint arXiv:2109.12932},
	year    = {2021},
}

🌴 Prerequisites

  • Linux
  • Python 3.8
  • Pytorch 1.9.1
  • GPU + CUDA CuDNN
  • pillow, torchvision, scipy, numpy

πŸ“‘ Datasets

Dataset download link:

  • miniImageNet It contains 100 classes with 600 images in each class, which are built upon the ImageNet dataset. The 100 classes are divided into 64, 16, 20 for meta-training, meta-validation and meta-testing, respectively.
  • tieredImageNet TieredImageNet is also a subset of ImageNet, which includes 608 classes from 34 super-classes. Compared with miniImageNet, the splits of meta-training(20), meta-validation(6) and meta-testing(8) are set according to the super-classes to enlarge the domain difference between training and testing phase. The dataset also include more images for training and evaluation (779,165 images in total).

Note: You need to manually change the dataset directory.

πŸ€ Few-shot Classification

  • Train a 5-way 1-shot SSFormers model based on Conv-64F (on miniImageNet dataset):
 python experiments/run_trainer.py  --cfg ./configs/miniImagenet/ST_N5K1_R12.yaml --device 0

Test model on the test set:

python experiments/run_evaluator.py --cfg ./configs/miniImagenet/ST_N5K1_R12.yaml -c ./checkpoint/*/*.pth --device 0

and semi-supervised few-shot learning tasks (with trial t=1).

python experiments/run_semi_trainer.py --cfg ./configs/miniImagenet/ST_N5K1_semi_with_extractor.yaml --device 0 -t 1

python experiments/run_semi_evaluator.py --cfg ./configs/miniImagenet/ST_N5K1_semi_with_extractor.yaml -c ./checkpoints/*/*.pth --device 0

πŸ“§ Contacts

Please feel free to contact us if you have any problems.

Email: [email protected]

Owner
chx_nju
Master student in Nanjing University.
chx_nju
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
Official repository for Jia, Raghunathan, GΓΆksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022