Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Overview

Invariant Point Attention - Pytorch

Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alphafold2 for coordinate refinement.

  • write up a test for invariance under rotation
  • enforce float32 for certain operations

Install

$ pip install invariant-point-attention

Usage

import torch
from einops import repeat
from invariant_point_attention import InvariantPointAttention

attn = InvariantPointAttention(
    dim = 64,                  # single (and pairwise) representation dimension
    heads = 8,                 # number of attention heads
    scalar_key_dim = 16,       # scalar query-key dimension
    scalar_value_dim = 16,     # scalar value dimension
    point_key_dim = 4,         # point query-key dimension
    point_value_dim = 4        # point value dimension
)

single_repr   = torch.randn(1, 256, 64)      # (batch x seq x dim)
pairwise_repr = torch.randn(1, 256, 256, 64) # (batch x seq x seq x dim)
mask          = torch.ones(1, 256).bool()    # (batch x seq)

rotations     = repeat(torch.eye(3), '... -> b n ...', b = 1, n = 256)  # (batch x seq x rot1 x rot2) - example is identity
translations  = torch.zeros(1, 256, 3) # translation, also identity for example

attn_out = attn(
    single_repr,
    pairwise_repr,
    rotations = rotations,
    translations = translations,
    mask = mask
)

attn_out.shape # (1, 256, 64)

You can also use this module without the pairwise representations, which is very specific to the Alphafold2 architecture.

import torch
from einops import repeat
from invariant_point_attention import InvariantPointAttention

attn = InvariantPointAttention(
    dim = 64,
    heads = 8,
    require_pairwise_repr = False   # set this to False to use the module without pairwise representations
)

seq           = torch.randn(1, 256, 64)
mask          = torch.ones(1, 256).bool()

rotations     = repeat(torch.eye(3), '... -> b n ...', b = 1, n = 256)
translations  = torch.randn(1, 256, 3)

attn_out = attn(
    seq,
    rotations = rotations,
    translations = translations,
    mask = mask
)

attn_out.shape # (1, 256, 64)

You can also use one IPA-based transformer block, which is an IPA followed by a feedforward. By default it will use post-layernorm as done in the official code, but you can also try pre-layernorm by setting post_norm = False

import torch
from torch import nn
from einops import repeat
from invariant_point_attention import IPABlock

block = IPABlock(
    dim = 64,
    heads = 8,
    scalar_key_dim = 16,
    scalar_value_dim = 16,
    point_key_dim = 4,
    point_value_dim = 4
)

seq           = torch.randn(1, 256, 64)
pairwise_repr = torch.randn(1, 256, 256, 64)
mask          = torch.ones(1, 256).bool()

rotations     = repeat(torch.eye(3), 'r1 r2 -> b n r1 r2', b = 1, n = 256)
translations  = torch.randn(1, 256, 3)

block_out = block(
    seq,
    pairwise_repr = pairwise_repr,
    rotations = rotations,
    translations = translations,
    mask = mask
)

updates = nn.Linear(64, 6)(block_out)
quaternion_update, translation_update = updates.chunk(2, dim = -1) # (1, 256, 3), (1, 256, 3)

# apply updates to rotations and translations for the next iteration

Citations

@Article{AlphaFold2021,
    author  = {Jumper, John and Evans, Richard and Pritzel, Alexander and Green, Tim and Figurnov, Michael and Ronneberger, Olaf and Tunyasuvunakool, Kathryn and Bates, Russ and {\v{Z}}{\'\i}dek, Augustin and Potapenko, Anna and Bridgland, Alex and Meyer, Clemens and Kohl, Simon A A and Ballard, Andrew J and Cowie, Andrew and Romera-Paredes, Bernardino and Nikolov, Stanislav and Jain, Rishub and Adler, Jonas and Back, Trevor and Petersen, Stig and Reiman, David and Clancy, Ellen and Zielinski, Michal and Steinegger, Martin and Pacholska, Michalina and Berghammer, Tamas and Bodenstein, Sebastian and Silver, David and Vinyals, Oriol and Senior, Andrew W and Kavukcuoglu, Koray and Kohli, Pushmeet and Hassabis, Demis},
    journal = {Nature},
    title   = {Highly accurate protein structure prediction with {AlphaFold}},
    year    = {2021},
    doi     = {10.1038/s41586-021-03819-2},
    note    = {(Accelerated article preview)},
}
Comments
  • Computing point dist - use cartesian dimension instead of hidden dimension

    Computing point dist - use cartesian dimension instead of hidden dimension

    https://github.com/lucidrains/invariant-point-attention/blob/2f1fb7ca003d9c94d4144d1f281f8cbc914c01c2/invariant_point_attention/invariant_point_attention.py#L130

    I think it should be dim=-1, thus using the cartesian (xyz) axis, rather than dim=-2, which uses the hidden dimension.

    opened by aced125 3
  • In-place rotation detach not allowed

    In-place rotation detach not allowed

    Hi, this is probably highly version-dependent (I have pytorch=1.11.0, pytorch3d=0.7.0 nightly), but I thought I'd report it. Torch doesn't like the in-place detach of the rotation tensor. Full stack trace (from denoise.py):

    Traceback (most recent call last):
      File "denoise.py", line 56, in <module>
        denoised_coords = net(
      File "/home/pi-user/miniconda3/envs/piai/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/pi-user/invariant-point-attention/invariant_point_attention/invariant_point_attention.py", line 336, in forward
        rotations.detach_()
    RuntimeError: Can't detach views in-place. Use detach() instead. If you are using DistributedDataParallel (DDP) for training, and gradient_as_bucket_view is set as True, gradients are views of DDP buckets, and hence detach_() cannot be called on these gradients. To fix this error, please refer to the Optimizer.zero_grad() function in torch/optim/optimizer.py as the solution.
    

    Switching to rotations = rotations.detach() seems to behave correctly (tested in denoise.py and my own code). I'm not totally sure if this allocates a separate tensor, or just creates a new node pointing to the same data.

    opened by sidnarayanan 1
  • Report a bug that causes instability in training

    Report a bug that causes instability in training

    Hi, I would like to report a bug in the rotation, that causes instability in training. https://github.com/lucidrains/invariant-point-attention/blob/de337568959eb7611ba56eace2f642ca41e26216/invariant_point_attention/invariant_point_attention.py#L322

    The IPA Transformer is similar to the structure module in AF2, where the recycling is used. Note that we usually detach the gradient of rotation, which may causes instability during training. The reason is that the gradient of rotation would update the rotation during back propagation, which results in the instability based on experiments. Therefore we usually detach the rotation to dispel the updating effect of gradient descent. I have seen you do this in your alphafold2 repo (https://github.com/lucidrains/alphafold2).

    If you think this is a problem, please let me know. I am happy to submit a pr to fix that.

    Best, Zhangzhi Peng

    opened by pengzhangzhi 1
  • Subtle mistake in the implementation

    Subtle mistake in the implementation

    Hi. Thanks for your implementation. It is very helpful. However, I find that you miss the dropout in the IPAModule.

    https://github.com/lucidrains/invariant-point-attention/blob/de337568959eb7611ba56eace2f642ca41e26216/invariant_point_attention/invariant_point_attention.py#L239

    In the alphafold2 supplementary, the dropout is nested in the layer norm, which also holds true in the layer norm at transition layer (line 9 in the figure below). image

    If you think this is a problem, please let me know. I will submit a pr to fix it. Thanks again for sharing such an amazing repo.

    Best, Zhangzhi Peng

    opened by pengzhangzhi 1
  • change quaternions update as original alphafold2

    change quaternions update as original alphafold2

    In the original alphafold2 IPA module, pure-quaternion (without real part) description is used for quaternion update. This can be broken down to the residual-update-like formulation. But in this code you use (1, a, b, c) style quaternion so I believe the quaternion update should be done as a simple multiply update. As far as I have tested, the loss seems to go down more efficiently with the modification.

    opened by ShintaroMinami 1
  • #126 maybe omit the 'self.point_attn_logits_scale'?

    #126 maybe omit the 'self.point_attn_logits_scale'?

    Hi luci:

    I read the original paper and compare it to your implement, found one place might be some mistake:

    #126. attn_logits_points = -0.5 * (point_dist * point_weights).sum(dim = -1),

    I thought it should be attn_logits_points = -0.5 * (point_dist * point_weights * self.point_attn_logits_scale).sum(dim = -1)

    Thanks for your sharing!

    opened by CiaoHe 1
  • Application of Invariant point attention : preserver part of structure.

    Application of Invariant point attention : preserver part of structure.

    Hi, lucidrian. First of all really thanks for your work!

    I have a question, how can I change(denoise) the structure only in the region I want, how do I do it? (denoise.py)

    opened by hw-protein 0
  • Equivariance test for IPA Transformer

    Equivariance test for IPA Transformer

    @lucidrains I would like to ask about the equivariance of the transformer (not IPA blocks). I wonder if you checked for the equivariance of the output when you allow the transformation of local points to global points using the updated quaternions and translations. I am not sure why this test fails in my case.

    opened by amrhamedp 1
Owner
Phil Wang
Working with Attention
Phil Wang
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
Robotics environments

Robotics environments Details and documentation on these robotics environments are available in OpenAI's blog post and the accompanying technical repo

Farama Foundation 121 Dec 28, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)

GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i

4 Sep 13, 2022
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021