Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Related tags

Deep LearningPASF
Overview

Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Beining Han,   Chongyi Zheng,   Harris Chan,   Keiran Paster,   Michael R. Zhang,   Jimmy Ba

paper

Summary: Deep Reinforcement Learning agents often face unanticipated environmental changes after deployment in the real world. These changes are often spurious and unrelated to the underlying problem, such as background shifts for visual input agents. Unfortunately, deep RL policies are usually sensitive to these changes and fail to act robustly against them. This resembles the problem of domain generalization in supervised learning. In this work, we study this problem for goal-conditioned RL agents. We propose a theoretical framework in the Block MDP setting that characterizes the generalizability of goal-conditioned policies to new environments. Under this framework, we develop a practical method PA-SkewFit (PASF) that enhances domain generalization.

@article{han2021learning,
  title={Learning Domain Invariant Representations in Goal-conditioned Block MDPs},
  author={Han, Beining and Zheng, Chongyi and Chan, Harris and Paster, Keiran and Zhang, Michael and Ba, Jimmy},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

Installation

Our code was adapted from rlkit and was tested on a Ubuntu 20.04 server.

This instruction assumes that you have already installed NVIDIA driver, Anaconda, and MuJoCo.

You'll need to get your own MuJoCo key if you want to use MuJoCo.

1. Create Anaconda environment

Install the included Anaconda environment

$ conda env create -f environment/pasf_env.yml
$ source activate pasf_env
(pasf_env) $ python

2. Download the goals

Download the goals from the following link and put it here: (PASF DIR)/multiworld/envs/mujoco.

$ ls (PASF DIR)/multiworld/envs/mujoco
... goals ... 
  1. (Optional) Speed up with GPU rendering

3. (Optional) Speed-up with GPU rendering

Note: GPU rendering for mujoco-py speeds up training a lot but consumes more GPU memory at the same time.

Check this Issues:

Remember to do this stuff with the mujoco-py package inside of your pasf_env.

Running Experiments

The following command run the PASF experiments for the four tasks: Reach, Door, Push, Pickup, in the learning curve respectively.

$ source activate pasf_env
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_reach_lc_exp.bash
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_door_lc_exp.bash
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_push_lc_exp.bash
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_pickup_lc_exp.bash
  • The bash scripts only set equation, equation, and equation with the exact values we used for LC. But you can play with other hyperparameters in python scripts under (PASF DIR)/experiment.

  • Training and evaluation environments are chosen in python scripts for each task. You can find the backgrounds in (PASF DIR)/multiworld/core/background and domains in (PASF DIR)/multiworld/envs/assets/sawyer_xyz.

  • Results are recorded in progress.csv under (PASF DIR)/data/ and variant.json contains configuration for each experiment.

  • We simply set random seeds as 0, 1, 2, etc., and run experiments with 6-9 different seeds for each task.

  • Error and output logs can be found in (PASF DIR)/terminal_log.

Questions

If you have any questions, comments, or suggestions, please reach out to Beining Han ([email protected]) and Chongyi Zheng ([email protected]).

Owner
Chongyi Zheng
Chongyi Zheng
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023