On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Overview

Understanding Bayesian Classification

This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification by Sanyam Kapoor, Wesley J Maddox, Pavel Izmailov, and Andrew Gordon Wilson.

Key Ideas

Aleatoric uncertainty captures the inherent randomness of the data, such as measurement noise. In Bayesian regression, we often use a Gaussian observation model, where we control the level of aleatoric uncertainty with a noise variance parameter. By contrast, for Bayesian classification we use a categorical distribution with no mechanism to represent our beliefs about aleatoric uncertainty. Our work shows that:

  • Explicitly accounting for aleatoric uncertainty significantly improves the performance of Bayesian neural networks.
Aleatoric Conceptual
In classification problems, we do not have a direct way to specify our assumptions about aleatoric uncertainty. In particular, we might use the same Bayesian neural network model if we know the data contains label noise (scenario A) and if we know that there is no label noise (scenario B), leading to poor performance in at least one of these scenarios.
  • We can match or exceed the performance of posterior tempering by using a Dirichlet observation model, where we explicitly control the level of aleatoric uncertainty, without any need for tempering.
Tiny-Imagenet
Accounting for the label noise via the noisy Dirichlet model or the tempered softmax likelihood significantly improves accuracy and test negative log likelihood accross the board, here shown for the Tiny Imagenet dataset. The optimal performance is achieved for different values of temperature in the tempered softmax likelihood and the noise parameter for the noisy Dirichlet likelihood.
  • The cold posterior effect is effectively eliminated by properly accounting for aleatoric uncertainty in the likelihood model.
Cold Posterior Effect
BMA test accuracy for the noisy Dirichlet model with noise parameter 1e−6 and the softmax likelihood as a function of posterior temperature on CIFAR-10. The noisy Dirichlet model shows no cold posterior effect.

Setup

All requirements are listed in environment.yml. Create a conda environment using:

conda env create -n <env_name>

Next, ensure Python modules under the src folder are importable as,

export PYTHONPATH="$(pwd)/src:${PYTHONPATH}"

To use bnn_priors, see respective installation instructions.

Usage

The main script to run all SGMCMC experiments is experiments/train_lik.py.

As an example, to run cyclical SGHMC with our proposed noisy Dirichlet likelihood on CIFAR-10 with label noise, run:

python experiments/train_lik.py --dataset=cifar10 \
                                --label_noise=0.2 \
                                --likelihood=dirichlet \
                                --noise=1e-2 \
                                --prior-scale=1 \
                                --sgld-epochs=1000 \
                                --sgld-lr=2e-7 \
                                --n-cycles=50 \
                                --n-samples=50

Each argument to the main method can be used as a command line argument due to Fire. Weights & Biases is used for all logging. Configurations for various Weights & Biases sweeps are also available under configs.

License

Apache 2.0

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Jack Turner 12 Nov 05, 2022
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022