Towards Fine-Grained Reasoning for Fake News Detection

Overview

FinerFact

This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Arxiv).

@article{jin2021towards,
  title={Towards Fine-Grained Reasoning for Fake News Detection},
  author={Jin, Yiqiao and Wang, Xiting and Yang, Ruichao and Sun, Yizhou and Wang, Wei and Liao, Hao and Xie, Xing},
  journal={arXiv preprint arXiv:2110.15064},
  year={2021}
}

The implementation is based on HuggingFace Transformers and KernelGAT.

Installation

  • Run conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.2 -c pytorch. conda is preferred over pip due to its stability on Windows

Instruction to run code

  • Take politifact as an example. Make sure you have put the following training and test files under data/.
    • Train_bert-base-cased_politifact_130_5.pt
    • Test_bert-base-cased_politifact_130_5.pt
  • If the Train_*.pt and Test_*.pt files are not present, you can run preprocess/preprocess.py to split the training data (e.g. bert-base-cased_politifact_130_5.pt) into Train_*.pt and Test_*.pt. You can download the data here
  • Download the files for pretrained BERT model and put them under bert_base/. You should have the following 3 files in bert_base/:
    • pytorch_model.bin
    • vocab.txt
    • bert_config.json
  • make sure you have set the root path given by get_root_dir() in utils/utils to your own data path of fake_news_data/. Mine is root = "C:\\Workspace\\FakeNews\\fake_news_data" on Windows and root = "../../fake_news_data"
  • run the train.py file using kgat/ as the working directory:
    • python train.py --outdir . --config_file P.ini, or
    • python train.py --outdir . --config_file G.ini
Owner
Ahren_Jin
UCLA CS 2022. Research Intern @microsoft research asia (2021). SDE Intern @amazon Seattle Office, FBA team (Summer 2020). SDE Intern @IBM Cloud (Summer 2019)
Ahren_Jin
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.

Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa

2.9k Jan 04, 2023
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Command-line tool for downloading and extending the RedCaps dataset.

RedCaps Downloader This repository provides the official command-line tool for downloading and extending the RedCaps dataset. Users can seamlessly dow

RedCaps dataset 33 Dec 14, 2022