NAACL2021 - COIL Contextualized Lexical Retriever

Overview

COIL

Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning COIL models well as encoding and retrieving with COIL index.

The code was refactored from our original experiment version to use the huggingface Trainer interface for future compatibility.

Contextualized Exact Lexical Match

COIL systems are based on the idea of contextualized exact lexical match. It replaces term frequency based term matching in classical systems like BM25 with contextualized word representation similarities. It thereby gains the ability to model matching of context. Meanwhile COIL confines itself to comparing exact lexical matched tokens and therefore can retrieve efficiently with inverted list form data structure. Details can be found in our paper.

Dependencies

The code has been tested with,

pytorch==1.8.1
transformers==4.2.1
datasets==1.1.3

To use the retriever, you need in addition,

torch_scatter==2.0.6
faiss==1.7.0

Resource

MSMARCO Passage Ranking

Here we present two systems: one uses hard negatives (HN) and the other does not. COIL w/o HN is trained with BM25 negatives, and COIL w/ HN is trained in addition with hard negatives mined with another trained COIL.

Configuration MARCO DEV [email protected] TREC DL19 [email protected] TREC DL19 [email protected] Chekpoint MARCO Train Ranking MARCO Dev Ranking
COIL w/o HN 0.353 0.7285 0.7136 model-checkpoint.tar.gz train-ranking.tar.gz dev-ranking.tsv
COIL w/ HN 0.373 0.7453 0.7055 hn-checkpoint.tar.gz train-ranking.tar.gz dev-ranking.tsv
  • Right Click to Download.
  • The COIL w/o HN model was a rerun as we lost the original checkpoint. There's a slight difference in dev performance, about 0.5% and also some improvement on the DL2019 test.

Tokenized data and model checkpoint link

Hard negative data and model checkpoint link

more to be added soon

Usage

The following sections will work through how to use this code base to train and retrieve over the MSMARCO passage ranking data set.

Training

You can download the train file psg-train.tar.gz for BERT from our resource link. Alternatively, you can run pre-processing by yourself following the pre-processing instructions.

Extract the training set from the tar ball and run the following code to launch training for msmarco passage.

python run_marco.py \  
  --output_dir $OUTDIR \  
  --model_name_or_path bert-base-uncased \  
  --do_train \  
  --save_steps 4000 \  
  --train_dir /path/to/psg-train \  
  --q_max_len 16 \  
  --p_max_len 128 \  
  --fp16 \  
  --per_device_train_batch_size 8 \  
  --train_group_size 8 \  
  --cls_dim 768 \  
  --token_dim 32 \  
  --warmup_ratio 0.1 \  
  --learning_rate 5e-6 \  
  --num_train_epochs 5 \  
  --overwrite_output_dir \  
  --dataloader_num_workers 16 \  
  --no_sep \  
  --pooling max 

Encoding

After training, you can encode the corpus splits and queries.

You can download pre-processed data for BERT, corpus.tar.gz, queries.{dev, eval}.small.json here.

for i in $(seq -f "%02g" 0 99)  
do  
  mkdir ${ENCODE_OUT_DIR}/split${i}  
  python run_marco.py \  
    --output_dir $ENCODE_OUT_DIR \  
    --model_name_or_path $CKPT_DIR \  
    --tokenizer_name bert-base-uncased \  
    --cls_dim 768 \  
    --token_dim 32 \  
    --do_encode \  
    --no_sep \  
    --p_max_len 128 \  
    --pooling max \  
    --fp16 \  
    --per_device_eval_batch_size 128 \  
    --dataloader_num_workers 12 \  
    --encode_in_path ${TOKENIZED_DIR}/split${i} \  
    --encoded_save_path ${ENCODE_OUT_DIR}/split${i}
done

If on a cluster, the encoding loop can be paralellized. For example, say if you are on a SLURM cluster, use srun,

for i in $(seq -f "%02g" 0 99)  
do  
  mkdir ${ENCODE_OUT_DIR}/split${i}  
  srun --ntasks=1 -c4 --mem=16000 -t0 --gres=gpu:1 python run_marco.py \  
    --output_dir $ENCODE_OUT_DIR \  
    --model_name_or_path $CKPT_DIR \  
    --tokenizer_name bert-base-uncased \  
    --cls_dim 768 \  
    --token_dim 32 \  
    --do_encode \  
    --no_sep \  
    --p_max_len 128 \  
    --pooling max \  
    --fp16 \  
    --per_device_eval_batch_size 128 \  
    --dataloader_num_workers 12 \  
    --encode_in_path ${TOKENIZED_DIR}/split${i} \  
    --encoded_save_path ${ENCODE_OUT_DIR}/split${i}&
done

Then encode the queries,

python run_marco.py \  
  --output_dir $ENCODE_QRY_OUT_DIR \  
  --model_name_or_path $CKPT_DIR \  
  --tokenizer_name bert-base-uncased \  
  --cls_dim 768 \  
  --token_dim 32 \  
  --do_encode \  
  --p_max_len 16 \  
  --fp16 \  
  --no_sep \  
  --pooling max \  
  --per_device_eval_batch_size 128 \  
  --dataloader_num_workers 12 \  
  --encode_in_path $TOKENIZED_QRY_PATH \  
  --encoded_save_path $ENCODE_QRY_OUT_DIR

Note that here p_max_len always controls the maximum length of the encoded text, regardless of the input type.

Retrieval

To do retrieval, run the following steps,

(Note that there is no dependency in the for loop within each step, meaning that if you are on a cluster, you can distribute the jobs across nodes using srun or qsub.)

  1. build document index shards
for i in $(seq 0 9)  
do  
 python retriever/sharding.py \  
   --n_shards 10 \  
   --shard_id $i \  
   --dir $ENCODE_OUT_DIR \  
   --save_to $INDEX_DIR \  
   --use_torch
done  
  1. reformat encoded query
python retriever/format_query.py \  
  --dir $ENCODE_QRY_OUT_DIR \  
  --save_to $QUERY_DIR \  
  --as_torch
  1. retrieve from each shard
for i in $(seq -f "%02g" 0 9)  
do  
  python retriever/retriever-compat.py \  
      --query $QUERY_DIR \  
      --doc_shard $INDEX_DIR/shard_${i} \  
      --top 1000 \  
      --save_to ${SCORE_DIR}/intermediate/shard_${i}.pt
done 
  1. merge scores from all shards
python retriever/merger.py \  
  --score_dir ${SCORE_DIR}/intermediate/ \  
  --query_lookup  ${QUERY_DIR}/cls_ex_ids.pt \  
  --depth 1000 \  
  --save_ranking_to ${SCORE_DIR}/rank.txt

python data_helpers/msmarco-passage/score_to_marco.py \  
  --score_file ${SCORE_DIR}/rank.txt

Note that this compat(ible) version of retriever differs from our internal retriever. It relies on torch_scatter package for scatter operation so that we can have a pure python code that can easily work across platforms. We do notice that on our system torch_scatter does not scale very well with number of cores. We may in the future release another faster version of retriever that requires some compiling work.

Data Format

For both training and encoding, the core code expects pre-tokenized data.

Training Data

Training data is grouped by query into one or several json files where each line has a query, its corresponding positives and negatives.

{
    "qry": {
        "qid": str,
        "query": List[int],
    },
    "pos": List[
        {
            "pid": str,
            "passage": List[int],
        }
    ],
    "neg": List[
        {
            "pid": str,
            "passage": List[int]
        }
    ]
}

Encoding Data

Encoding data is also formatted into one or several json files. Each line corresponds to an entry item.

{"pid": str, "psg": List[int]}

Note that for code simplicity, we share this format for query/passage/document encoding.

Owner
Luyu Gao
NLP Research [email protected], CMU
Luyu Gao
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
๐Ÿ”Ž Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
๐Ÿ˜ฎThe official implementation of "CoNeRF: Controllable Neural Radiance Fields" ๐Ÿ˜ฎ

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

12 Nov 22, 2022
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022