Differentiable molecular simulation of proteins with a coarse-grained potential

Overview

Differentiable molecular simulation of proteins with a coarse-grained potential

Build status

This repository contains the learned potential, simulation scripts and training code for the paper:

Greener JG and Jones DT, Differentiable molecular simulation can learn all the parameters in a coarse-grained force field for proteins, bioRxiv (2021) - link

It provides the cgdms Python package which can be used to simulate any protein and reproduce the results in the paper.

Installation

  1. Python 3.6 or later is required. The software is OS-independent.
  2. Install PyTorch 1.6 or later as appropriate for your system. A GPU is not essential but is recommended as simulations are slower on the CPU. However running on CPU is about 3x slower than GPU depending on hardware, so it is still feasible.
  3. Run pip install cgdms, which will also install NumPy, Biopython and PeptideBuilder if they are not already present. The package takes up about 75 MB of disk space.

Usage

On Unix systems the executable cgdms will be added to the path during installation. On Windows you can call the bin/cgdms script with python if you can't access the executable.

Run cgdms -h to see the help text and cgdms {mode} -h to see the help text for each mode. The modes are described below but there are other options outlined in the help text such as specifying the device to run on, running with a custom parameter set or changing the logging verbosity.

Generating protein data files

To simulate or calculate the energy of proteins you need to generate files of a certain format. If you want to use the proteins presented in the paper, the data files are here. Otherwise you will need to generate these files:

cgdms makeinput -i 1CRN.pdb -s 1CRN.ss2 > 1CRN.txt
cat 1CRN.txt
TTCCPSIVARSNFNVCRLPGTPEAICATYTGCIIIPGATCPGDYAN
CCCCCCCEECCCCCEECCCCCHHHEEEECCCEEEECCCCCCCCCCC
17.047 14.099 3.625 16.967 12.784 4.338 15.685 12.755 5.133 18.551 12.359 5.368
15.115 11.555 5.265 13.856 11.469 6.066 14.164 10.785 7.379 12.841 10.531 4.694
13.488 11.241 8.417 13.66 10.707 9.787 12.269 10.431 10.323 15.126 12.087 10.354
12.019 9.272 10.928 10.646 8.991 11.408 10.654 8.793 12.919 9.947 7.885 9.793
...
  • -i is a well-behaved PDB or mmCIF file. This means a single protein chain with no missing residues or heavy atoms. Hetero atoms are ignored and all residues must be standard. The format is guessed from the file extension, default PDB.
  • -s is the PSIPRED secondary structure prediction ss2 output file. An example is given along with other example files here. If this option is omitted then fully coiled is assumed, which is not recommended, though you could replace that with a secondary structure prediction of your choosing or the known secondary structure depending on your use case.

If you are not interested in the RMSDs logged during the simulation and don't want to start simulation from the native structure, the coordinate lines (which contain coordinates for N/Cα/C/sidechain centroid) are not used. In this case you can generate your own files with random numbers in place of the coordinates. This would also apply to sequences where you don't know the native structure.

Running a simulation

Run a molecular dynamics simulation of a protein in the learned potential:

cgdms simulate -i 1CRN.txt -o traj.pdb -s predss -n 1.2e7
    Step        1 / 12000000 - acc  0.005 - vel  0.025 - energy -44.06 ( -21.61 -15.59  -6.86 ) - Cα RMSD  32.59
    Step    10001 / 12000000 - acc  0.005 - vel  0.032 - energy -14.76 ( -11.82   0.46  -3.40 ) - Cα RMSD  32.28
    Step    20001 / 12000000 - acc  0.005 - vel  0.030 - energy  -9.15 (  -8.19   2.15  -3.10 ) - Cα RMSD  31.95
    Step    30001 / 12000000 - acc  0.005 - vel  0.028 - energy  -9.03 ( -10.20   2.22  -1.04 ) - Cα RMSD  31.79
...
  • -i is a protein data file as described above.
  • -o is the optional output PDB filepath to write the simulation to. By default snapshots are taken and the energy printed every 10,000 steps but this can be changed with the -r flag. PULCHRA can be used to generate all-atom structures from these output files if required.
  • -s is the starting conformation. This can be predss (extended with predicted secondary structure), native (the conformation in the protein data file), extended (extended with small random perturbations to the angles), random (random in ϕ -180° -> -30°, ψ -180° -> 180°) or helix (ϕ -60°, ψ -60°).
  • -n is the number of simulation steps. It takes ~36 hours on a GPU to run a simulation of this length, or ~10 ms per time step.
  • -t, -c, -st, -ts can be used to change the thermostat temperature, thermostat coupling constant, starting temperature and integrator time step respectively.

Calculating the energy

Calculate the energy of a protein structure in the learned potential:

cgdms energy -i 1CRN.txt
-136.122
  • -i is a protein data file as described above.
  • -m gives an optional number of minimisation steps before returning the energy, default 0.

Since calculating the energy without minimisation steps is mostly setup, running on the CPU using -d cpu is often faster than running on the GPU (~5 s to ~3 s).

Threading sequences onto a structure

Calculate the energy in the learned potential of a set of sequences threaded onto a structure.

cgdms thread -i 1CRN.txt -s sequences.txt
1 -145.448
2 -138.533
3 -142.473
...
  • -i is a protein data file as described above.
  • -s is a file containing protein sequences, one per line, of the same length as the sequence in the protein data file (that sequence is ignored). Since lines in the sequence file starting with > are ignored, FASTA files can be used provided each sequence is on a single line.
  • -m gives an optional number of minimisation steps before returning the energy, default 100.

Training the system

Train the system.

cgdms train
Starting training
Epoch    1 - med train/val RMSD  0.863 /  0.860 over  250 steps
Epoch    2 - med train/val RMSD  0.859 /  0.860 over  250 steps
Epoch    3 - med train/val RMSD  0.856 /  0.854 over  250 steps
...
  • -o is an optional output learned parameter filepath, default cgdms_params.pt.

Training takes about 2 months on a decent GPU and is unlikely something you want to do.

Exploring potentials

The learned potential and information on the interactions can be found in the Python package:

import torch
from cgdms import trained_model_file
params = torch.load(trained_model_file, map_location="cpu")
print(params.keys())
dict_keys(['distances', 'angles', 'dihedrals', 'optimizer'])
  • params["distances"] has shape [28961, 140] corresponding to the 28,960 distance potentials described in the paper and a flat potential used for same atom interactions. See cgdms.interactions for the interaction described by each potential, which has values corresponding to 140 distance bins.
  • params["angles"] has shape [5, 20, 140] corresponding to the 5 bond angles in cgdms.angles, the 20 amino acids in cgdms.aas, and 140 angle bins.
  • params["dihedrals"] has shape [5, 60, 142] corresponding to the 5 dihedral angles in cgdms.dihedrals, the 20 amino acids from cgdms.aas in each predicted secondary structure type (ala helix, ala sheet, ala coil, arg helix, etc.), and 140 angle bins with an extra 2 to wrap round and allow periodicity.

Notes

Running a simulation takes less than 1 GB of GPU memory for any number of steps. Training a model takes up to 32 GB of GPU memory once the number of steps is fully scaled up to 2,000. See the discussion in the paper for ways of alleviating this.

The lists of training and validation PDB chains are available here and the protein data files here.

See the autobuild script and logs for automated commands to install and run the package in Ubuntu.

The code in this package is set up to run specific coarse-grained simulations of proteins. However, the package contains code that could be useful to others wishing to carry out general differentiable simulations with PyTorch. This includes integrators not used in the paper and not thoroughly tested (velocity-free Verlet, two Langevin implementations), the Andersen thermostat, RMSD with the Kabsch algorithm, and code to apply forces to atoms from bond angle and dihedral angle potentials.

Other software related to differentiable molecular simulation includes Jax MD, TorchMD, DeePMD-kit, SchNetPack, DiffTaichi, Time Machine and Molly.

You might also like...
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Neural Scene Flow Fields using pytorch-lightning, with potential improvements
Neural Scene Flow Fields using pytorch-lightning, with potential improvements

nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

MolRep: A Deep Representation Learning Library for Molecular Property Prediction
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Comments
  • Output `Killed` with no other information

    Output `Killed` with no other information

    Hi, Thanks for the excellent work.

    I installed the tool and can run the file generation command: cgdms makeinput -i 1CRN.pdb -s 1CRN.ss2 > 1CRN.txt

    But I cannot run the simulate command. The output is just one word Killed.

    $ cgdms simulate -i 1CRN.txt -o traj.pdb -s predss -n 1.2e7
    Killed
    

    Could you please take a look and advise how to debug?

    Best, Roden

    My conda environment is attached:

    name: cgdms
    channels:
      - pytorch
      - salilab
      - conda-forge
      - bioconda
      - defaults
    dependencies:
      - _libgcc_mutex=0.1=conda_forge
      - _openmp_mutex=4.5=2_kmp_llvm
      - blas=1.0=mkl
      - bzip2=1.0.8=h7f98852_4
      - ca-certificates=2022.6.15=ha878542_0
      - cudatoolkit=10.2.89=h713d32c_10
      - freetype=2.10.4=h0708190_1
      - giflib=5.2.1=h36c2ea0_2
      - jpeg=9e=h166bdaf_2
      - lcms2=2.12=hddcbb42_0
      - ld_impl_linux-64=2.36.1=hea4e1c9_2
      - lerc=3.0=h9c3ff4c_0
      - libdeflate=1.12=h166bdaf_0
      - libffi=3.4.2=h7f98852_5
      - libgcc-ng=12.1.0=h8d9b700_16
      - libnsl=2.0.0=h7f98852_0
      - libpng=1.6.37=h21135ba_2
      - libstdcxx-ng=12.1.0=ha89aaad_16
      - libtiff=4.4.0=hc85c160_1
      - libuuid=2.32.1=h7f98852_1000
      - libwebp=1.2.2=h3452ae3_0
      - libwebp-base=1.2.2=h7f98852_1
      - libxcb=1.13=h7f98852_1004
      - libzlib=1.2.12=h166bdaf_1
      - llvm-openmp=14.0.4=he0ac6c6_0
      - lz4-c=1.9.3=h9c3ff4c_1
      - mkl=2021.4.0=h8d4b97c_729
      - mkl-service=2.4.0=py38h95df7f1_0
      - mkl_fft=1.3.1=py38h8666266_1
      - mkl_random=1.2.2=py38h1abd341_0
      - ncurses=6.3=h27087fc_1
      - ninja=1.11.0=h924138e_0
      - numpy=1.22.3=py38he7a7128_0
      - numpy-base=1.22.3=py38hf524024_0
      - openjpeg=2.4.0=hb52868f_1
      - openssl=3.0.4=h166bdaf_2
      - pillow=9.1.1=py38h0ee0e06_1
      - pip=22.1.2=pyhd8ed1ab_0
      - pthread-stubs=0.4=h36c2ea0_1001
      - python=3.8.13=ha86cf86_0_cpython
      - python_abi=3.8=2_cp38
      - pytorch=1.6.0=py3.8_cuda10.2.89_cudnn7.6.5_0
      - readline=8.1.2=h0f457ee_0
      - setuptools=62.6.0=py38h578d9bd_0
      - six=1.16.0=pyh6c4a22f_0
      - sqlite=3.39.0=h4ff8645_0
      - tbb=2021.5.0=h924138e_1
      - tk=8.6.12=h27826a3_0
      - torchvision=0.7.0=py38_cu102
      - wheel=0.37.1=pyhd8ed1ab_0
      - xorg-libxau=1.0.9=h7f98852_0
      - xorg-libxdmcp=1.1.3=h7f98852_0
      - xz=5.2.5=h516909a_1
      - zlib=1.2.12=h166bdaf_1
      - zstd=1.5.2=h8a70e8d_2
      - pip:
        - biopython==1.79
        - cgdms==1.0
        - colorama==0.4.5
        - peptidebuilder==1.1.0
    
    opened by RodenLuo 7
Releases(v1.0)
Owner
UCL Bioinformatics Group
UCL bioinformatics group repositories
UCL Bioinformatics Group
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds

Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds Xinxin Zuo, Sen Wang, Minglun Gong, Li Cheng Prerequisites We have tested the code on Ubun

41 Dec 12, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022